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The present paper proposes an original scheme for the dynamic analysis of the vehicle–bridge interaction
(VBI) between trains and curved in-plan bridges. Key features are the three-dimensional vehicle dynam-
ics formulation, and the matrix statement of the equations which condense the VBI dynamics, making the
scheme generic. The analysis brings forward the interaction along the radial and torsional sense of curved
bridges, which are often neglected for straight bridges. Specifically, the study shows that the (centrifugal
and Coriolis) forces generated due to the curved path govern the lateral dynamics of the vehicle–bridge
system when the curvature and/or the velocity are high.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Railway networks are expanding worldwide, and especially in
China, to meet the increasing requirements for high-standard
transportation. After ten years of constructing new high-speed rail-
ways and upgrading existing conventional railway lines, China
now shares the world’s longest (Fig. 1 [1]) high-speed railway
(HSR). Compared with the conventional railway lines, HSR’s have
a higher percentage of bridges [2], mainly for reasons of safety,
comfort and mitigation of noise pollution. For instance, the Bei-
jing-Shanghai HSR line is 1318 km long, out of which 1059.4 km
(80.5% of the whole line [3]) is on mostly viaduct bridges. Further,
the operational speed for HSR trains in China has been limited from
350 km/h (in 2011) to 300 km/h [4] (in 2013). These unprece-
dented speeds trains operate, over an ever increasing length of rail-
way bridges, create incentive to revisit their dynamic interaction to
ensure safety and comfort during travel.

The VBI dynamics attracts the attention of researchers for
almost a century [5]. As the field matured, the standard VBI model
shifted, from the moving-force model [6–10], to the moving-mass
model [11–14] and then to the sprung mass model [15–18]. Au
et al. [16] compared the influence of five different vehicle models,
on a cable-stayed bridge, and noted that the moving force and the
moving mass models tend to underestimate the impact effect. Dur-
ing the last decades, the advent of personalized, high computa-
tional power enabled the consideration of more sophisticated
models, for both bridges and vehicles. Most recent studies, e.g.
[3,19–32], simulate the vehicle as an assembly of rigid-bodies
(car body, bogies and wheelsets) connected with springs and dash-
pots representing the properties of the suspension system. For the
purpose of a numerical VBI analysis, the response of bridges is cap-
tured either with integration in the time domain of the complete
geometrical model [10,23,33–36] or with the modal superposition
method [9,21,37–42]. Alternatively, the so-called VBI-element can
be used which condenses (dynamically) the vehicle and the bridge
subsystems (Yang and Lin [33]). Yang and Yau [34] refined the VBI-
element approach taking into account the pitching effect of the
vehicle, while Lou and Zeng [36] proposed a similar element con-
sidering a four-axle 10-DOF vehicle model with two-layer suspen-
sion systems. Very recently, Neves et al. [43] proposed a direct-
method for the analysis of the nonlinear VBI along the vertical
direction.

The majority of the VBI studies examine the problem solely in
the vertical direction. Hence, despite the abundance of VBI studies,
to the authors’ knowledge, studies on the VBI of curved in-plan
bridges (e.g. Fig. 2 [44]) are scarce. In particular, Yang et al. [45]
derived closed-form solutions for a single-span, simply supported,
horizontally curved beam subjected to pairs of moving vertical and
horizontal (centrifugal) loads. Xia et al. [41] examined the lateral
VBI dynamics of a 3D train model running on curved railway lines,
supported on straight girders. Following a different approach than
the one proposed herein, that study [41] concluded that in curved
bridges, the centrifugal forces dominate the lateral dynamics, even
over the effect of the hunting motion of the wheelset. The study
further argued that no resonance is observed in the lateral VBI in
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curved bridges [41], and compared their numerical results with
field experiments.

The primary motivation for this study is: (i) the expanding con-
ventional and HSR networks worldwide, (ii) the ever increasing
ratio of bridges comprising contemporary HSR lines, (iii) the
unprecedented speeds trains operate, and (iv) the lack of published
research on the dynamic VBI in the case of curved in-plan bridges.
The present research deploys an original and versatile framework,
for the simulation of the interaction dynamics between trains and
curved, in-plan, railway bridges (Fig. 2).
Fig. 2. A continuous curved in-plan railway bridge of the Lan-wu line, in China.
(Image CC from CRCC [44]).
2. Proposed approach

With the aim to avoid an ad hoc treatment of the VBI problem,
the proposed approach deploys a matrix formulation, and results
in a set of equations of motion (Eq. (23)) which are condensed
and easily reproducible. For a different bridge and/or different
vehicle-models or numbers of vehicles, one has only to implement
the same matrix equations, presented later in Eq. (23), for the per-
tinent matrices.

The examined dynamical system consists of the vehicle subsys-
tem and the bridge subsystem. The two subsystems are coupled
through the contact forces between the vehicle wheels and the
rails. The study simulates the, straight or curved in-plan (horizon-
tally), bridges with the finite element method (FEM), and models
the vehicles as multibody assemblies. The solution of the global
equations provides the response of both the bridge and the vehicle
simultaneously. The mass matrix, the stiffness matrix, the damping
matrix and the loading vector of the global (coupled vehicle–
bridge) system become time-dependent. The paper accounts for
the self-excitations, such as the elevation and alignment rail irreg-
ularities, the hunting motion of the wheelset, and the subsequent
rolling rotation due to the conicity of the wheels. The study also
considers the track eccentricity (offset) with respect to the shear
center of the deck’s section and the effect of the cant angle. It is
assumed that all deformations remain small and that the linear
elastic theory applies. Numerically, the proposed framework is
realized with MATLAB [46].
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Fig. 1. The blue print of the planned high-speed railway network in China for 2020.
2.1. Vehicle modeling

The train vehicles are modeled as multibody assemblies com-
prised of (Fig. 3(a)): (i) one car body, (ii) two bogies and (iii) four
wheelsets of each vehicle, which are all considered as rigid bodies.
Fig. 3(a) presents the typical, 27 degrees of freedom (DOF’s), 3D
vehicle model [45] utilized in this study. The car body, the front
and the rear bogies are assigned five DOF’s each: the vertical and
the lateral displacements, the yawing, the rolling, and the pitching
rotations (Fig. 3(b)). For each wheelset, only three DOF’s are desig-
nated: the vertical and the lateral displacements, and the rolling
rotation.

Following [47], the study employs three systems of reference to
formulate the equations of motion of the vehicle: an inertia (space-
fixed) system O–XYZ, a moving trajectory system O0–XtiYtiZti, and a
body-fixed system Oir–XirYirZir (Fig. 4).

The definition of the moving trajectory system O0–XtiYtiZti

requires only a time-dependent coordinate, the arc length, si

(Fig. 4). The orientation of the trajectory system is then defined
using three Euler angles: wti (yawing), /ti (rolling) and hti (pitching)
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The total envisaged length for 2020 is 50,000 km. (Image CC from Alancrh [1]).
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Fig. 3. (a) The adopted vehicle model and the contact forces kN, kT considered, (b) sign convention of the vehicle, (c) a beam element in contact with the wheel and (d) local
and global coordinate systems of a curved beam.
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Fig. 4. The three coordinate systems used, adapted from [47].
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about the three axes Yti, Xti and Zti respectively (Fig. 4 [47]). All
three Euler angles are known functions of the arc length si. The lon-
gitudinal direction of the trajectory system O0Xti is set tangent to
the curve at its origin O0 (Fig. 4).

The body-fixed system Oir–XirYirZir follows the longitudinal -
tangential to the trajectory- motion of the trajectory system, with
its origin fixed to the center of mass of the body. The motion of the
rigid body in the trajectory coordinate system is described with
five time-dependent coordinates: two translations yir (vertical)
and zir (lateral), and three rotations wir (yawing), /ir (rolling) and
hir (pitching) about the three axes Yir, Xir and Zir respectively
(Fig. 4).

The Newton–Euler equation of motion can describe the motion
of the vehicle in terms of generalized trajectory coordinates as
[47]:

MV ðtÞ€uV ¼ FV
e þ FV

v ðtÞ ð1Þ

where superscript ( )V denotes the vehicle subsystem and €uV is the
generalized acceleration vector in the trajectory system. Through-
out this paper the upper-dot denotes the time derivative. The dis-
placement vector of a single vehicle with 27 DOF’s is:

uV ¼ uc ut1 ut2 uw1 uw2 uw3 uw4
� �T

uc ¼ yc zc wc /c hc� �
ut ¼ yt zt wt /t ht

� �
uw ¼ yw zw /w� �

8>>>><>>>>: ð2Þ

where the superscripts c, t, w denote the car body, the bogies and
the wheelsets respectively. y and z denote the vertical and lateral
displacement; w, / and h are, the yawing, rolling and pitching rota-
tions (Fig. 3(b)). MV(t) is the mass matrix; FV

e is the vector of exter-
nal forces; FV

v ðtÞ is the vector of centrifugal forces and Coriolis forces
- the first and the second item in Eq. (3).

To illustrate the details of Eq. (1), consider a specific rigid body
component of the vehicle, for instance the car-body (indicated with
superscript c). It holds [47]:

McðtÞ ¼ mcLcðtÞTLcðtÞ þHcðtÞTIc
hhHcðtÞ

Fc
e ¼ Fc

G � Fc
K � Fc

D

Fc
vðtÞ ¼ �mcLcðtÞTcc

R �HcðtÞT Ic
hh

�cc
a þ �xc � Ic

hh
�xc

� �� �
8><>: ð3Þ
Throughout this paper superscript T denotes the transpose of a
matrix and the upper-bar symbol, ðÞ, indicates that the particular
quantity is defined in the body-fixed system. �x is the angular veloc-
ity vector, m is the mass and Ihh is the inertia tensor (defined in the
body-fixed system) about the principle axes of each rigid body. For
the car body we have:

Ic
hh ¼ diag Ic

xx Ic
yy Ic

zz

� �
ð4Þ

L and H are velocity transformation matrices, corresponding to the
translational and rotational DOF’s according to [47]. In the case of
curved bridges, both L and H are varying in time. FG is the gravity
force vector; FK is the vector of the elastic forces; FD the vector of
the damping forces. cR and �ca are vectors containing the additional
quadratic velocity terms produced during the time-differentiation
of the absolute linear velocity and the absolute angular velocity vec-
tors [47], respectively.

The equations for the remaining components of the vehicle,
bogies and wheelsets are similar to Eq. (3). Gathering the equations
of all rigid body components (car body, bogies and wheelsets)
together, and replacing the elastic force vector Fi

K and the damping
force vector Fi

D from Eq. (3) with their matrix expressions, the
equation of motion for the vehicle subsystem (Fig. 3(a)) can be
written as:
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MV ðtÞ€uV þ CV _uV þ KV uV �WV
NkN �WV

T kT ¼ FV ðtÞ ð5Þ

KV and CV are the stiffness and the damping matrix of the vehicle
(Fig. 3(a)) given in [45]. uV 2 R27;1 is the displacement vector of
the vehicle given in Eq. (2) and FV is the force vector:

FV ¼ FV
G þ FV

v ð6Þ

kN and kT are the normal and the tangential contact force vectors
(discussed in Section 2.3) respectively, and WV

N and WV
T are the

direction matrices of the corresponding contact forces kN and kT:

WV
N ¼

0Vu
N

WVw
N

" #
; WV

T ¼
0Vu

T

WVw
T

" #
ð7Þ

Throughout this paper, the subscripts N and T stand for the normal
and the tangential direction of contact respectively. The only non-
zero entries in matrices WV

N and WV
T correspond to the wheels of

the vehicle (superscript ( )Vw). For the upper part of the vehicle,
i.e. the car body and the bogies, (superscript ( )Vu), the pertinent
sub-matrices 0Vu

N and 0Vu
T are zero. For a single vehicle (like the

one in Fig. 3(a)), it holds: 0Vu
N 2 R15;8 and 0Vw

T 2 R15;4;WVw
N 2 R12;8

and WVw
T 2 R12;4; kN 2 R8;1 and kT 2 R4;1, where nomenclature

WVw
T 2 R12;4 means WVw

T is a real matrix with 12 rows and 4 col-
umns. For a single wheelset, the sub matrices WVwi

N and WVwi
T in

Eq. (7) are:

WVwi
N ¼

1 1
0 0
�la la

264
375; WVwi

T ¼
0
1
�rw

264
375 ð8Þ

where i = 1–4 corresponds to the four wheelsets, la is the half-gauge
and rw is the radius of the wheel.

2.2. Bridge modeling

The bridge is modeled with (3D) Euler–Bernoulli beam ele-
ments, using linear and cubic (Hermitian) shape functions [49].
Six DOF’s are considered per node: three displacements and three
rotations with respect to the X, Y and Z axis accordingly.

After assembly and transformation into the global system, the
mass matrix MB and the stiffness matrix KB for the entire bridge
are obtained. CB is a Rayleigh damping matrix and it is calculated
assuming the damping ratio of the first two modes is 0.02 [50].
The equation of motion for the bridge can be written as:

MB €uB þ CB _uB þ KBuB þWB
NkN þWB

TkT ¼ FB ð9Þ

where uB is the bridge displacement vector and FB is the vector of
the loads acting on the bridge. WB

N and WB
T are the direction matri-

ces of the contact forces for the bridge subsystem. They contain the
linear shape functions for the axial and torsional DOF’s and the
cubic (Hermitian) shape functions for the flexural DOF’s (see Eq.
(17)). Again, the only nonzero entries in the WB

N and WB
T matrices

correspond to the DOF’s of the bridge elements (i.e. the correspond-
ing part of the rails) in contact with the wheels of the vehicle
(Fig. 3(c)).

2.3. Vehicle–bridge interaction

The equation of motion of the coupled vehicle–bridge system
can be written as:

M€uþ C _uþ Ku�Wk ¼ F ð10Þ

where the global mass matrix M, the global stiffness matrix K and
the global damping matrix C are created by gathering the pertinent
matrices of the two individual subsystems as:
M ¼ MV ðtÞ 0
0 MB

" #
; C ¼ CV 0

0 CB

" #
; K ¼ KV 0

0 KB

" #
ð11Þ

The direction matrices WN and WT, the displacement vector u and
the force vector F for the whole system are constructed in an anal-
ogous manner:

u ¼ uV

uB

� 	
; FðtÞ ¼ FV ðtÞ

FB

" #
; k ¼

kN

kT

� 	
;

W ¼ WN WT½ �; WN ¼
WV

N

�WB
N

" #
; WT ¼

WV
N

�WB
N

" #
8>>>>><>>>>>:

ð12Þ

The scheme is readily applicable for different bridge and vehicle
models, or numbers of vehicles, by adjusting the pertinent matrices
in Eq. (12). For example:

� For a single vehicle with nV DOF’s (e.g. nV = 27) and 8 wheels,
and a bridge system with nB DOF’s, it holds:
M; C; K 2 RnVþnB;nVþnB; u; F 2 RnVþnB;1

WN 2 RnVþnB;8; WT 2 RnVþnB;4; kN 2 R8;1; kT 2 R4;1

ð13Þ

where again, WT 2 RnVþnB;4 for instance, indicates that matrix WT

is a real matrix with (nV + nB) rows and four columns.
� Similarly, for j identical vehicles with nV DOF’s each, it holds:
M; C; K 2 Rj�nVþnB;j�nVþnB; u; F 2 Rj�nVþnB;1

WN 2 Rj�nVþnB;j�8; WT 2 Rj�nVþnB;j�4;

kN 2 Rj�8;1; kT 2 Rj�4;1

ð14Þ

While the train is moving over the bridge, the contact forces
change with respect to both time (t) and space (si). The contact
forces kN and kT between the wheels and the bridge (Fig. 3(a)) cou-
ple in Eq. (10) the two sets of equations, Eqs. (5) and (9), describing
the response of the two subsystems. In particular, the location of
the contact point i (Fig. 3(c)), for a vehicle with constant speed v
is si = vt and thus, the direction sub-matrices WB

N and WB
T (the

shape functions) are time-dependent.
The non-zero direction matrices WBi

N and WBi
T of beam element i

(Fig. 3(c)) expressed in the global reference system, are connected
with the pertinent direction matrices ~WBi

N 2 R12;2 and ~WBi
T 2 R12;1

expressed in the local system of each bridge element as:

WBi
N ¼ RT

i
~WBi

N

WBi
T ¼ RT

i
~WBi

T

(
ð15Þ

where Ri 2 R12;12 is the transformation matrix accounting for the
angle wi between the local system (coordinate system of each
beam-element) and the global coordinate system (Fig. 3(d)). It
holds:

RT
i ¼ diag RT

i0 RT
i0 RT

i0 RT
i0

� �
; RT

i0 ¼
cwi 0 �swi

0 1 0
swi 0 cwi

264
375 ð16Þ

where s and c are the abbreviations of the sin and cos function,
respectively. Accounting for the geometrical relationship between
the shear center of the deck section and the rail, the pertinent direc-
tion matrices ~WBi

N and ~WBi
T in the local system are given as:

~WBi
N ¼ Nv Nh N/½ �Ci

v

~WBi
T ¼ Nv Nh N/½ �Ci

h

ð17Þ

where Nv (cubic), Nh (cubic) and N/ (linear) are the shape functions
corresponding to the vertical flexural DOF’s, horizontal flexural
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DOF’s and torsional DOF’s [49]. Matrices Ci
v and Ci

h transfer the nor-
mal and tangential contact forces to the shear center of the bridge
deck, and are given as:

Ci
v ¼

c/i c/i

s/i s/i

c/ie1 þ s/ih c/ie2 þ s/iðDhþ hÞ

264
375;

Ci
h ¼

�s/i

c/i

�s/ie2 þ c/iðDhþ hÞ

264
375

ð18Þ

where e1 and e2 are the lateral eccentricities (offsets). h and Dh are
the vertical distances as in Fig. 5(a). /i = / + /h is the final tilting
angle, in which, / is the track cant angle (Fig. 5(a)), and /h is the
additional rolling rotation due to the hunting motion of the wheel-
set (see Fig. 5(b)) [41], given in Section 2.5.

A key point of the VBI problem is the treatment of the coupling
contact forces. This study adopts a macroscopic approach and
hinges on the calculation of a set of equivalent contact forces per
wheelset (Fig. 3(a)), similarly to [21,45]. In particular, it considers
two forces per wheelset, (i.e. one per wheel) in the normal direc-
tion of contact, but only one in the tangential direction; the resul-
tant of the contacts at the two wheels (Fig. 3(a)). The consideration
of the resultant tangential force, instead of the individual tangen-
tial contact forces, is eligible by the rigid body assumption of the
axle/wheelset, and, most importantly, does not over-constraint
the contact problem (see e.g. [51,52]).

Kinematic constraint: The study assumes a continuous non-
sliding contact in both directions (normal and tangential), similarly
with the ‘rigid’ contact approach of [3]. On the acceleration level,
the kinematic constraint of a sticking (no sliding) continuous con-
tact (no separation/uplifting) is that the relative acceleration €g
between the wheel and the rail is zero [48]:

€g ¼WT €uþ �w ¼ 0 ð19Þ

where �w contains the additional generalized velocity terms pro-
duced during the time-differentiation and is given in the Appendix.

A limitation of the proposed approach is that it hinges on the
calculation of the resultant tangential contact force (macroscopic
FG
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Y
Z

h
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Δh

(a)

(b) yH
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λT1
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Fccosφ FGsinφ
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Fig. 5. (a) Geometrical relationship between the shear center of the bridge’s deck
section and the rail, and (b) /h the additional rolling rotation of a wheelset due to
the hunting motion.
approach) and it ignores creep. As a result it does not allow for a
realistic estimation of the individual tangential (creep) force com-
ponents arising from the rolling contact between the wheel and
the rail. Instead, it focuses on the calculation of the resultant tan-
gential contact force.

From the contact kinematics (see the Appendix) and the equa-
tion of motion (10), the relative contact acceleration can be written
as:

€g ¼WTMðtÞ�1hþ GðtÞkþ �w ¼ 0 ð20Þ

where G(t) matrix is equal with G(t) = WTM(t)�1W, and its inverse
G(t)�1 represents the mass activated by the interaction; h is the
non-contact forces vector:

h ¼ FðtÞ � C _u� Ku ð21Þ

From Eq. (20) the contact forces vector k can now be derived:

k ¼ �GðtÞ�1 WTMðtÞ�1hþ �w

 �

ð22Þ

Constraint (19) with the help of Eqs. (10) and (20) yields the follow-
ing equation of motion for the bridge-vehicle system:

MðtÞ€uðtÞ þ C�ðtÞ _uðtÞ þ K�ðtÞuðtÞ ¼ F�ðtÞ ð23Þ

with:

C�ðtÞ ¼ E�WGðtÞ�1WTMðtÞ�1
h i

Cþ 2vWGðtÞ�1W0T

K�ðtÞ ¼ E�WGðtÞ�1WTMðtÞ�1
h i

Kþ v2WGðtÞ�1W00T

F�ðtÞ ¼ E�WGðtÞ�1WTMðtÞ�1
h i

FðtÞ � v2WGðtÞ�1r00c � v2WGðtÞ�1y00H

8>>>>>>><>>>>>>>:
ð24Þ

where ()’ denotes differentiation with respect to the arc length si,
and E is the identity matrix. rc 2 R12;1 is the rail elevation and align-
ment irregularities, as described in Section 2.4. yH 2 R12;1 is the
hunting motion in the tangential direction given in Eq. (27). In
the equation of motion (23), the mass matrix M, the damping
matrix C⁄, the stiffness matrix K⁄ and the force vector F⁄ are now
time-dependent. Eq. (23) is solved using the b-Newmark method
[50], with a time step of 0.0001 s.

2.4. Simulation of rail irregularities

The study considers both elevation (rcN) and alignment (rcT)
irregularities. The irregularities rc are simulated with the spectral
representation method [45] as stationary stochastic processes with
suitable amplitude and wavelength:

rc ¼
ffiffiffi
2
p XNc

n¼1

An cos xnsi þ an
� �

ð25Þ

where si is the arc length; xn = xlow + (n � 1/2)Dx represents a cir-
cular frequency in the interval [xlow,xup], with xlow and xup being
the lower and upper cut-off frequencies, respectively; n is the num-
ber of simulation points; Dx = (xup �xlow)/Nc is the frequency
increment; Nc is a sufficient large number; an denotes an indepen-
dent random phase angle, uniformly distributed between the inter-
val of [0, 2p]; An ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðxnÞDx

p
and S(xn) is the rail irregularity

auto-spectrum for a specific frequency of xn. In this study, the German
rail irregularity spectra [3] for high-speed railway are adopted:

elevation irregularities : SNðXÞ ¼
ANX2

c

X2 þX2
r


 �
X2 þX2

c


 �
alignment irregularities : STðXÞ ¼

ATX
2
c

X2 þX2
r


 �
X2 þX2

c


 � ð26Þ
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where X is the space frequency; AT = 2.119 � 10�7 m rad and
AN = 4.032 � 10�7 m rad are the rail irregularity parameters; Xc =
0.8246 rad/m, Xr = 0.0206 rad/m and Xs = 0.4380 rad/m are the
break frequencies [3].

2.5. Simulation of wheel hunting motion

The hunting motion in the tangential direction is simulated as a
sinusoidal function with wave amplitude As and a random phase
angle aH between 0 and 2p [3]:

yH ¼ As sin
2psi

LH
þ aH


 �
¼ As sin

2pvt
LH
þ aH


 �
ð27Þ

where v is the vehicle speed; As is taken as 3 mm; LH is the hunting
wavelength, given by:

LH ¼ 2p

ffiffiffiffiffiffiffiffiffi
larw

l

s
ð28Þ

where la = 0.75 m is the half-gauge; rw = 0.455 m is the radius of the
wheel and l is the effective conicity of the wheel, taken as 1/20 for a
newly made wheel [3].

The lateral hunting motion causes also an additional rotation /h

of the wheel set due to the conicity of the wheels (Fig. 5(b)):

/h ¼
yHl

la
¼

As sin 2psi

LH
þ aH


 �
l

la
ð29Þ

In summary, the proposed scheme (Eqs. (23) and (24)) condenses
the description of the VBI problem adopting a matrix formulation.
The scheme is applicable (all matrix expressions remain
unchanged) to both straight and curved bridges and accounts for
rail irregularities, wheelset hunting motion, track eccentricity and
different types of vehicles.

3. Comparison of the proposed scheme with existing solutions

This section compares the solutions of the proposed scheme
with problems well-known in literature e.g. [42,45]. The first prob-
lem is a simple two-dimensional (2D) train model, with four DOF’s,
moving with constant speed (v = 25 m/s) over a straight, simply
supported bridge [42]. The present study integrates the complete
finite element model of the (beam) bridge in the time domain,
while Omenzetter [42] adopts the modal superposition method
and accounts for the first three modes of vibration. The numerical
results of the present study compare well (Fig. 6) with the closed-
form solutions of Omenzetter [42]; the maximum relative differ-
ences are 1.16% and 1.99% for the bridge and the vehicle
respectively.

Fig. 7 concerns a 3D train model with 15 identical vehicles mov-
ing with constant speed (v = 100 m/s) over a straight, simply sup-
ported beam-bridge [45]. The bridge is modeled with 10 beam
elements. To accommodate the multiple identical vehicles, the pro-
posed formulation has only to augment the pertinent matrices in
Eqs. (5) and (9), as shown in Eq. (14). The response midspan verti-
cal displacements of the proposed scheme are in good agreement
(Fig. 7) with the pertinent results of Yang et al. [45] (the maximum
relative difference is 6.79%) considering the differences of the two
mechanical models. In particular, the Yang et al. [45] study simu-
lates the vehicle–rail–bridge interaction (as opposed to vehicle–
bridge interaction) modeling also the rail as a continuous beam
supported on spatially distributed spring-dashpot elements, which
are then connected with the beam elements simulating the bridge.

Further, Yang et al. [45] offered analytical solutions for the
response of a single-span, simply supported, curved bridge sub-
jected to a pair of moving loads (one vertical and one horizontal).
The proposed approach yields practically the same results
(Fig. 8), for an artificially stiff (SDOF) sprung mass vehicle model
(two concentrated masses connected by a spring and a dashpot)
moving with the same constant speed. In particular, the maximum
relative differences are 1.28% and 2.72% for the vertical and the
horizontal direction respectively. Fig. 9 offers, the vertical and
the horizontal, bridge midpoint, displacement spectra, of the same
bridge configuration, subjected to eight pairs of moving vertical
and horizontal (centrifugal) forces [45]. The VBI spectra of Fig. 9
read in dimensionless terms: the horizontal axis is expressed in
dimensionless speed S [45]:

S ¼ pv
xL

ð30Þ

where v is the speed of the vehicle, L is the length of the bridge and
x the corresponding natural angular frequency of the bridge. Note
that, for a specific bridge (given L and x values) the speed parame-



Table 1
The properties of the single-span simply supported curved in-plan bridge.

Parameter Notation Unit Value

Beam span L m 30
Young’ s modules E GPa 28.25
Polar moment of inertia Ip m4 15.65
Moment of inertia Iyy m4 74.42
Moment of inertia Izz m4 7.84
Per unit length mass m t 41.74
Cross section area A m2 7.73
Poisson’s ratio m 1 0.2
Eccentricity e1 m 1.88
Eccentricity e1 m 3.38
Vertical distance between the shear center of the

deck-section and the lower rail
h m 1.2
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ter is proportional to the velocity of the vehicle. The vertical axis
reads in terms of the (dimensionless) impact factor I, defined as
[45]:
I ¼ Rd � Rs

Rs
ð31Þ

Rd and Rs denote the peak dynamic and static response (e.g. of the
midpoint of the bridge) respectively. Again, the proposed scheme
returns the same results (Fig. 9) using eight stiff sprung mass mod-
els. The maximum relative differences are 0.82% for the vertical and
2.19% for the horizontal direction.

4. Vehicle–bridge interaction: Single-span curved in-plan
bridges

In curved bridges, the VBI (vehicle–bridge interaction) is not
confined in the vertical direction, but triggers the response in the
(horizontal) radial direction (e.g. Figs. 8 and 9), as well as, in the
torsional DOF’s about the longitudinal axis (of both the bridge
and the vehicle). This is a distinct characteristic of the VBI dynam-
ics in curved bridges, which in straight bridges is often neglected.

The present section focuses on the dynamic interaction
between single-span, curved in-plan, railway bridges and (high-
speed) trains. It builds on the work of other researchers (primarily,
Xia et al. [41] and Yang et al. [45]) and brings forward the physical
mechanism behind the VBI phenomenon in curved bridges, by
means of a parametric analysis.

4.1. Application of the proposed approach: single vehicle

Firstly, this section extends the work of Yang et al. [45], assum-
ing a realistic 3D train vehicle (instead of pairs of loads) running on
a single-span simply supported curved bridge. The characteristics
of the vehicle can be found in [45]. Table 1 lists the properties of
the bridge which is the same as the straight single-span, simply
supported bridge of Yang et al. [45], except for the curvature, the
cant angle and the horizontal eccentricities considered herein (as
in Section 2.3).

In the following, when the cant angle / is considered in the
analysis, it is assumed that it is equal with the balanced cant angle
[47]:

/bal ¼
v2

Rg
ð32Þ

where g is the gravitational acceleration; v is the speed of the vehi-
cle; R is the radius of the curved bridge.

Figs. 10 and 11 plot the vertical and radial time history displace-
ments of the midpoint of the bridge, with and without self-excita-
tions respectively, as well as, the pertinent radial-displacement
envelops. The envelop curves of Figs. 10 and 11 plot the peak radial
displacement of the time history response analyses, for each point
along the deck. The right columns of Figs. 10 and 11 present the
response displacements in dimensionless terms (=dynamic
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response/pseudo-static response). As pseudo – ‘‘static response’’
we define the static response under the vehicle’s weight for the
vertical direction, and under the centrifugal force (�miv2/R) for
the radial direction, accordingly. Note that the response along
the vertical DOF’s of the bridge is unaffected (and uncoupled) by
the radius of curvature, as a consequence of the small vibration
theory (Figs. 10(a) and (d) and 11(a) and (d)).

The comparison of Figs. 10 and 11 brings forward the influence
of the self-excitations on the radial direction of the bridge. Without
the self-excitations (Fig. 11) the dimensionless midpoint radial dis-
placements of the bridge, for different curvatures, and the perti-
nent envelopes, collapse to a single, unique (for a given L and v)
curve (Fig. 11(e) and (f)). As expected, as the radius decreases,
the centrifugal forces increase and hence the dimensional radial
displacements become higher (Figs. 10(b) and (c) and 11(b) and
(c)). For a given vehicle speed, larger radii result in smaller centrif-
ugal forces and subsequently, the self-excitations, rather than the
centrifugal forces, dominate the response. When expressed in the
proposed dimensionless terms, the opposite trend appears (com-
pare Fig. 10(b), (c) and (e), (f)): the larger the radius, the higher
the dimensionless radial displacement. This is true for both dis-
placement time histories (Fig. 10(e)), as well as, displacement
envelopes (Fig. 10(f)). Further, although the sign of the centrifugal
forces is negative in this case, the radial displacements fluctuate
between positive and negative values, due to the wheelset hunting
motion and the alignment irregularities (Fig. 10(b) and (e)). For
further increase of the curvature, e.g. when R = 5000 m and
R = 2500 m, the positive displacements disappear.

Before the train enters the bridge, it usually runs on an entry
spiral curve. To investigate the effect of the entry spiral curve on
the VBI, in an indirect but general way, we examine two limit cases
(Fig. 12). The first corresponds to a spiral curve long enough for the
train to come to an equilibrium state (in the radial direction)
before entering the bridge (Fig. 12(a), (b), (e) and (f)). To simulate
these conditions, we calculate the response of the vehicle running
on a path of the same curvature (i.e. we apply the centrifugal and
the Coriolis forces), but on a rigid ground, and we let the analysis
run until the (lateral and torsional) vibration come to a deformed
equilibrium configuration with zero radial acceleration. Then, the
calculated displacements are used as the initial conditions of the
VBI (Fig. 12(a), (b), (e) and (f)). The second limit case corresponds
to the theoretical scenario that there is no entry spiral curve. In
other words, the vehicle enters the curved bridge directly from a
straight path and the centrifugal forces act on the vehicle
suddenly; therefore, the initial radial acceleration of the vehicle
is �v2/Ri (in dimensional terms (Fig. 12(c) and (d)) or unity in
dimensionless terms (Fig. 12(g) and (h)), but the initial radial
displacements are zero (undeformed configuration). The pseudo-
static radial acceleration aVr,p�st (e.g. Fig. 12) is defined as �v2/Ri

with the bridge radius Ri ranging from 2500 m to 20000 m. The
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lateral self-excitations (the hunting motion and the alignment
irregularities) trigger the fluctuation of the vehicle accelerations
in the radial direction (Fig. 12(a) and (c)). Similarly to the radial
response of the bridge, for a given vehicle speed, large radii result
in smaller centrifugal forces and hence, the self-excitations domi-
nate the radial accelerations of the vehicle. This is evident in the
proposed dimensionless terms (Fig. 12(e) and (g)): the larger the
radius the higher the dimensionless accelerations of the vehicle.
On the other hand, when the self-excitations are neglected, the
dimensionless radial accelerations, for different radii, all start from
unity (Fig. 12(h)).

Recall that the riding comfort of the vehicle can be assessed by
the accelerations of the car-body, and that it is an issue of great
concern, especially for high-speed trains [45]. According to the Chi-
nese high speed railway code [53], the vertical and lateral vehicle
accelerations should be smaller than 0.13 g and 0.10 g, respec-
tively. Fig. 12(c) and (d) shows that these limits can be insufficient
in the extreme (theoretical) case where the train instantly changes
from a straight to curved path, when it enters the bridge.

Two important indices which evaluate the safety of a train vehi-
cle during VBI [53] are: (i) the derail factor defined as the ratio of
tangential contact force kTi and the normal contact force kNi acting
on the same wheel,

Derail factor ¼ kTi

kNi
ð33Þ
and (ii) the offloading factor defined as the absolute difference of the
normal forces divided by the sum of the normal forces on the two
wheels of the same wheelset:

Offloading factor ¼ jkNli � kNrij
kNli þ kNri

ð34Þ

where kNli and kNri are the normal contact forces on left and right
side wheel of the same wheelset. As a reference, according to the
Chinese code [53], the allowable value for the derail factor and
the offloading factor are 0.8 and 0.6, respectively. Recall, that
due to the limitations of the present analysis (Section 2), the
derail factor values of Figs. 13 and 14 are not based on the exact
(realistic) values of the tangential contact forces. Instead, the
tangential contact force is taken as half of the resultant value
calculated as explained in Section 2. The same is true for
Fig. 17 later on.

Figs. 13–16 display the time history of the derail factor and the
offload factor, for the wheel with the smallest normal contact force
(the first inner wheel with respect to the curve), when the vehicle
speed is 300 km/h. Without a cant angle, the derail factor exceeds
marginally the threshold of [53] when R is 5000 m (Fig. 13), and
the offloading factor is beyond the requirement of [53] for
R < 5000 m (Fig. 15). This observation is in agreement with the
minimum allowable radius of curvature for HSR bridges (5000 m
according to [53]). When a balanced cant angle is used, both the
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derail factor and offload factor satisfy the requirements of [53] for
all curvatures (Figs. 14 and 16). As expected, the proper use of the
cant angle counterbalances the lateral effect of the centrifugal
forces, and increases the safety of the vehicle. The self-excitations
(irregularities and hunting motion) increase both the derail
factor and the offload factor, without which, the derail factor and
the offload factor time history collapse to a straight line (from
Figs. 13–16).

Fig. 17 gives insight into the variation of the (dimensionless)
normal and tangential contact forces of the first inner wheel (with
respect to the curved path). The dimensionless normal force is
defined as the ratio of the normal contact force and the static
weight corresponding to a specific wheel (i.e. one-eighth of the
sum of the gravity forces of vehicle car body, two bogies and four
wheelsets). The dimensionless tangential force is defined as the
ratio of the tangential contact force and the pseudo-static centrif-
ugal force on a specific wheel (i.e. one-eighth of the total centrifu-
gal force of vehicle).
For a balanced cant angle, the normal contact forces are the
same for all radii (Fig. 17(a)). Without a cant angle, the normal con-
tact forces decrease with the decrease of the radii (Fig. 17(b)–(e)),
for both scenarios: with (gray solid line) and without (chain dotted
line) rail irregularities. This is due to the higher centrifugal forces
creating higher overturning moments on the vehicle, which subse-
quently result in lower normal contact forces of the inner (with
respsect to the curve) wheel. The same trend can be seen for the
tangential forces due to the lateral self-excitations (Fig. 17(f)–(i)
and (j)–(m)), since for large radius, the lateral amplification effect
of the hunting motion and the alignment irregularities are domi-
nating the response. Further, for a balanced cant angle and without
lateral self-excitations (third column of Fig. 17), the dimensionless
tangential force is practically zero. However, without a cant angle
(fourth column of Fig. 17) and without the lateral self-excitations
the dimensionless tangential contact forces are equal to unity.

Fig. 18 presents, in the proposed dimensionless terms, the mid-
point displacements of the bridge, and the accelerations of the
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vehicle’s car body, for speeds ranging from 100 km/h to 300 km/h.
The profile of the vertical midpoint displacements of the bridge is
very different depending on the speed of the vehicle (Fig. 18(a)).
The dynamic fluctuation of the vertical displacement is more
intense as the speed increases (Fig. 18(b)). On the contrary, the
dynamic amplification in the radial direction is less intense for
higher speeds (Fig. 18(d) and (e)). Recall that for a given radius
of curvature R, the centrifugal force increases with the increase
of the speed of the vehicle. Hence, at low speeds, it is the hunting
motion and the alignment irregularities that govern the lateral
stability of the bridge and the vehicle, while at higher speeds,
the lateral stability is affected mostly by the centrifugal
forces and the Coriolis forces. Consequently, high speed results
in larger dimensionless vertical accelerations of the vehicle
(Fig. 18(c)), but smaller dimensionless radial accelerations
(Fig. 18(f)).
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4.2. Application of the proposed approach: ten identical vehicles

This section considers ten identical vehicles passing over the
same bridge of Fig. 18. Fig. 19 plots the dimensionless midpoint
displacements of the bridge and the accelerations of the car body
of the first vehicle, in the vertical and radial directions. Unlike
the single vehicle case, the repetitive loading of the multiple train
vehicles, creates conditions of steady state response. Again, for low
speeds, the lateral self-excitations are the main source of excitation
of the radial displacement of the bridge (Fig. 19(d) and (e)) and the
radial acceleration of the vehicle (Fig. 19(f)), while the centrifugal
forces and the Coriolis forces become secondary. Characteristically,
the amplification of the radial acceleration of the vehicle is in the
order of 2 for v = 100 km/h (Fig. 19(f)). As the vehicle speed
increases though, the lateral dynamics of the vehicle–bridge
system is governed by the increasing centrifugal forces and the
Coriolis forces. As a result, for v = 200 km/h and v = 300 km/h, the
peak dynamic amplification of the radial acceleration is as low as 1.
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5. Vehicle–bridge interaction: Multi-span curved in-plan
bridges

This section presents a pilot VBI analysis for a continuous
multi-span curved bridge which is the most common structural
configuration for the existing curved bridges [2]. The structural
configuration examined resembles the geometry and the proper-
ties of the bridge of Fig. 2, though the radius of curvature is var-
ied from 2500 m to 20,000 m to account for the characteristics of
a HSR line. As a reference, the minimum allowed radius of curva-
ture, for a HSR according to the Chinese standards, is 5000 m,
while the recommended value is 6000–8000 m when the opera-
tional speed is 200–300 km/h [53]. It is assumed that the vertical
displacements at the top of the piers are fully restrained (pinned
supports). In the horizontal plane, elastic springs (with stiffness
k = 1 � 108 N/m) are judiciously used in both directions to
account for the reduced stiffness of the pier-foundation system
due to the soil-structure interaction, reported in [54]. The analy-
sis includes the effect of self-exactions (the elevation and align-
ment irregularities and the wheelset hunting motion) and the
eccentricity of the vehicle with respect to the shear center. It is
assumed there is no cant angle and four different radii are con-
sidered. Before it enters the bridge, the vehicle is assumingly run-
ning over a long enough transient spiral curve such that, when it
enters the curved in-plan bridge it has come to an equilibrium
state with zero acceleration.

Fig. 20 illustrates the radial midpoint displacements of the first,
the middle (fourth) and the last span, for different curvatures,
together with the corresponding radial accelerations of the vehicle.
Again, the radial displacements (Fig. 20(a)–(c)) increase with the
decrease of the radius of curvature in dimensional terms. But in
dimensionless terms, as the radius increases, the radial response
decreases (Fig. 20(e)–(g)), which is also explained due to the effect
of the self-excitations for lower curvatures as in Section 4.
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Figs. 21 and 22 demonstrate the effect of the vehicle’s speed
(from 100 km/h to 300 km/h) on the VBI response. In contrast to
single-span bridges, the spans adjacent to the spans loaded by
the train vehicle deflect upwards (Figs. 21 and 22). Due to the more
complicated deformation patters of multi-span continuous bridges,
the influence of the vehicle’s speed on the midpoint vertical dis-
placements of the bridge is not as transparent as in the case of sin-
gle-span bridges (Figs. 21(a)–(c) and 22(a)–(c)). This complexity is
even more pronounced in the case of multiple vehicles crossing a
multi-span curved bridge (Fig. 22). In other words, extending the
analysis, and the conclusions, of the single-span to multi-span
curved bridges it is not a trivial task and should be further investi-
gated. Without a cant angle, both the derail factor and the offload
factor go beyond the pertinent thresholds (0.8 and 0.6) of [54],
when R is smaller than 5000 m.
6. Conclusions

This study proposes an original scheme for the three-dimen-
sional analysis of the dynamic interaction between trains and
curved in-plan bridges, with emphasis on high-speed railways.
To this end, the proposed scheme adopts a recently proposed vehi-
cle-dynamics formulation. In the final equations of motion, of the
coupled vehicle–bridge system, all matrix/vector terms become
time-dependent.

The study compares the solutions of the proposed scheme with
benchmark problems from the literature. In all cases, the pertinent
results are in good agreement. It further shows that the scheme
accommodates easily – the matrix expressions remain unchanged
– different types of bridges and vehicles, of different type, and with
various degrees of freedom.
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The present paper examines both single-span and continuous
multi-span curved bridges and introduces a dimensionless descrip-
tion that elucidates the VBI dynamics. In particular, the paper shows
that the centrifugal and Coriolis forces, arising due to the curvature
of the bridge/path, govern the dynamics (e.g. the dynamic amplifica-
tion factor), along the radial direction, when the curvature and/or the
velocity are high. On the contrary, the self-excitations (i.e. the align-
ment irregularities and the hunting motion) become dominant
when the curvature and/or the velocity of the train vehicle are low.
In contrast, within the small-deformations regime, the VBI along
the vertical direction is relatively unaffected by the curvature and
the self-excitations (in the radial direction).
Appendix A. Contact kinematics

The contact displacement (relative displacement between the
wheel and the rail) is given by:
g ¼ gN gT½ �T ¼WTuþ rc þ yH ¼ 0 ðA:1Þ
where rc is the vector describing the elevation rcN and the alignment
rcT rail irregularities [45],

rc ¼ rcN rcT½ �T ðA:2Þ
yH is the wheel hunting motion in the tangential direction [3]:

After differentiation with respect to time the pertinent contact
velocity becomes:

_g ¼ _gN _gT½ �T ¼ d
dt

WTuþ rc þ yH


 �
¼WT _uþ ew ðA:3Þ

with:

~w ¼ vW0Tuþ vr0c þ vy0H ðA:4Þ
d
dt

rc ¼
d

dsi
rc

dsi

dt
¼ vr0c ðA:5Þ

d
dt

yH ¼
d

dsi
yH

dsi

dt
¼ vy0H ðA:6Þ
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d
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where ()0 denotes the differentiation with respect to the arc length
si. Similarly, for the contact acceleration after differentiation with
respect to time twice, it holds:

€g ¼ €gN €gT½ �T ¼ d2

dt2 WTuþ rc þ yH


 �
¼WT €uþ �w ðA:8Þ

with:

�w ¼ 2vW0T _uþ v2W00Tuþ v2r00c þ v2y00H ðA:9Þ
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