
Engineering Structures 114 (2016) 61–74
Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier .com/ locate /engstruct
Dynamic response of high speed vehicles and sustaining curved bridges
under conditions of resonance
http://dx.doi.org/10.1016/j.engstruct.2016.02.006
0141-0296/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +852 2358 5975.
E-mail address: ilias@ust.hk (E.G. Dimitrakopoulos).
Qing Zeng a, Y.B. Yang b, Elias G. Dimitrakopoulos a,⇑
aDepartment of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
b School of Civil Engineering, Chongqing University, Chongqing 400045, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 11 June 2015
Revised 3 February 2016
Accepted 3 February 2016

Keywords:
Vehicle-bridge-interaction
Curved bridge
Resonance
Cancelation
Railway bridge
This paper examines the dynamic response of vehicle(s) moving at high speeds and the sustaining
horizontally curved (simple, continuous or multi-unit) bridges, when each subsystem is set into resonance.
The bridge is simulated by finite elements and each vehicle as a multibody system. The coupling contact
forces, between the vehicle and the bridge, are derived by adopting a rigid contact assumption. Key fea-
ture of the present study is the simulation of the three-dimensional (3D) dynamics of a vehicle running
over a horizontally curved path. This simulation allows the examination of deformation modes of the 3D
multibody vehicle model (e.g. related to lateral-rolling and yawing degrees of freedom) for the first time.
In all cases, the numerical results agree well with pertinent analytical solutions. From the parametric
study, the followings are observed: (1) The impact factors show the same pattern for the vertical and
the radial directions. (2) The suspension damping can alleviate the resonance response of the car body
even when the vehicle’s resonance condition is met. (3) The feedback effect of the bridge’s resonance
to the vehicle response is large, but the vehicle’s resonance effect on the bridge response is quite small,
especially along the vertical direction. (4) No resonance of the middle span of the continuous bridge
occurs for the second mode in the vertical and the radial directions. (5) The increase in the number of
spans results in both smaller displacement and lower impact factor.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

During the passage of a train over a bridge, the bridge resonance
vibration occurs when the loading frequency of the moving vehi-
cles coincides with a natural frequency of the bridge [1,2]. The
intense vibrations induced by the bridge resonance, affect not only
the serviceability and the life span of the bridge, but also reduce
the running safety of the trains and the comfort of passengers
[2,3]. On the other hand, when the bridge cancelation occurs, the
free vibrations induced by the moving vehicles sum up to zero,
leaving practically, no or little, residual response on the bridge
after the last wheel load of the train leaves the bridge [1,2]. The
cancelation effect may suppress the vibration of the bridge even
when the resonance condition is met, which is favorable for the
working state of the bridge, running safety of the vehicle, and rid-
ing comfort of the passengers [1,2].

Yang et al. [1] studied the resonance and the cancelation
conditions of a simply supported straight beam, by modeling the
vehicles as a series of equidistant moving loads. They proposed
optimal design criteria for bridges according to the derived condi-
tions of resonance and cancelation. Further, Yau et al. [4] and Yang
et al. [5] investigated the resonance and the cancelation mecha-
nism of a simply supported bridge with elastic supports in the ver-
tical direction. The vibration shape of the elastically supported
beam was modeled by the superposition of a flexural sine mode
and a rigid body mode. They indicated that the resonance speeds
were lower for elastically supported beams than those for simply
supported beams. They also showed that the critical speed for
cancelation to occur is independent of the support stiffness. Xia
et al. [6] investigated the resonance mechanism of different bridge
types using theoretical derivations, which were assessed by
numerical simulations and field measurements. Also, Xia et al.
[7] derived the solution for the resonant and cancelation vibrations
of simple bridges under moving train loads, and confirmed the
cancelation effect. Xia et al. [8] studied the lateral resonance con-
dition of a 48-span straight simply-supported steel truss bridge,
considering the wind pressures acting on vehicle bodies. Also, Song
et al. [9] examined the resonance of a composite bridge and a box-
girder bridge, while Ju and Lin [10] of an arch bridge and Yau and
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Frýba [11] of a suspension bridge. More resonance studies include:
the theoretical approach of Frýba [12], the bridge-track-vehicle
model by Cheng et al. [13] and the nonlinear wheel-rail analysis
of Dinh et al. [14].

Yang et al. [15] derived the analytical solution for a horizontally
curved beam subjected to vertical and horizontal moving loads,
with the later generated by the centrifugal forces of vehicles mov-
ing over a circular path. They confirmed the results by an indepen-
dent numerical simulation. This study was likely the first on the
lateral resonance of curved bridges. Except those by Yang’s group
[2,3,16], most previous studies on resonance and cancelation
focused mainly on the vertical resonance of straight bridges, with
basically no evaluation of the performance of the vehicles under
the conditions of bridge resonance. Recall that, the term vehicle-
bridge interaction (VBI) was first introduced in 1995 [16] to empha-
size the equal importance of the two subsystems: moving vehicles
and bridges. When the loading frequency from the bridge coincides
with the natural frequency of the vehicles constituting the train,
the vehicular dynamic response is amplified (i.e. due to resonance)
[8]. Recently, Yang and Yau [17] studied the vertical and the pitch-
ing resonances of vehicles moving over a series of simple beams, by
considering the vehicle-bridge interaction of the first-order.
Namely, the bridge response induced by the moving vehicles was
included in evaluating the vehicles’ response. Of course, the vehi-
cles’ response will affect the bridge again, but this is a second-
order feedback, which is quite small and therefore was neglected.
To the authors’ knowledge, with the exception of [17], very few
studies examined the resonance of the vehicle system, especially
using a fully 3D multibody vehicle model, in particular the 3D res-
onance of the car body’s motion for the lateral-rolling and the yaw-
ing degrees of freedom (DOFs).

The study of resonance in VBI systems offers a constructive
guidance for the design of railway lines and has significant engi-
neering implications. The critical conditions of the resonance
should always be avoided in practical design [2]. Similarly, it is
imperative to avoid the occurrence of the resonance when
speeding-up existing railway lines over bridges [2]. To this end,
an optimal speed for the train is the one that satisfies the condition
of cancelation [2]. In this context, the primary scope for this study
is: (i) to elucidate numerically the resonance and the cancelation
conditions of horizontally curved railway bridges, including simply
supported and continuous ones. In this context, the impact of the
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bridge resonance to the response of running vehicles is assessed;
and (ii) to investigate numerically the resonance conditions of
vehicles running over horizontally curved multi-span railway
bridges and to examine the effect of vehicle resonance on the
response of the supporting bridge.

2. Dynamic analysis of the vehicle-bridge interaction

2.1. Modelling of the vehicle and vehicular dynamics

As shown in Fig. 1, each vehicle of the train is modeled as a 3D
multibody assembly, consisting of one car body, two bogies and
four wheelsets. The distinct components, the car-body, the bogies
and the wheelsets, are rigid (non-deforming) bodies connected
by linear springs and viscous dashpots representing the suspension
system.

To describe the motion of the vehicle running along a horizon-
tally curved path, the present study employs three systems of ref-
erence: an inertial (space-fixed) system I, a moving trajectory
system TI, and a body-fixed system IR (Fig. 2), following [18]. The
motion of the moving trajectory system is defined by a time-
dependent coordinate, the arc length si (Fig. 2). The longitudinal

direction of the trajectory system OtiXti is set tangent to the curve

at its origin Oti. The orientation of the moving trajectory system is
then defined using three Eulerian angles about the three axes
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Zti;Xti and Yti, which are known functions of the arc length si. The
body-fixed system follows the longitudinal motion of the trajec-
tory system, with its origin fixed to the center of mass of the body.
The motion of the rigid body in the trajectory coordinate system is
described with five time-dependent coordinates: two translations
yir (lateral) and zir (vertical), and three Eulerian angles wir (yawing),

/ir (rolling) and hir (pitching) about the three axes Zir; Xir and Yir ,
respectively (Fig. 2).

The equation of motion for each vehicle, in the trajectory
coordinate system, is:

MV tð Þ€uV þ CV _uV þ KVuV �WV
NkN �WV

T kT ¼ FV ð1Þ

where KV and CV are the stiffness and damping matrices, respec-
tively, of the vehicle given in [19]; MV ðtÞ is the mass matrix of the
vehicle, which is time-dependent due to the rotating system of
reference [20]. Considering a specific rigid body component of the
vehicle (indicated with a superscript i), for instance a wheelset in
Fig. 2, the mass matrix is:

Mi tð Þ¼IL
i tð ÞTmi

IL
i tð Þ þ IRH

i tð ÞT IRIihh IRHi tð Þ ð2Þ
Throughout this paper, the superscript ‘‘T” denotes the transpose of
a matrix, and the left subscript denotes the reference system to
which each vector or matrix is referring to; mi is the lumped mass

of the rigid body and IRI
i
hh is the inertia tensor about the principal

axes of rigid body i. The matrices IL
iðtÞ and IRH

i tð Þ are time-
varying velocity transformation matrices, pertaining to the transla-
tional and the rotational DOFs, respectively, which arise due to the
horizontally curved path [18].

In Eq. (1), uV 2 R31;1 is the displacement vector of the whole
vehicle, where the symbol 2 R31;1 denotes a real matrix with 31
rows and 1 column. The car body and the bogies are assigned 5
DOFs (Fig. 1), with the acceleration vector €uu in terms of the trajec-
tory coordinates TI:

€uu ¼ €yu €zu €wu €/u €hu
� �T ð3Þ

Each wheelset has 4 DOFs (Fig. 1),

€uw ¼ €yw €zw €ww €/w
� �T ð4Þ

where the superscript ( )u (Eq. (3)) stands for the upper part of the
vehicle (car body and the bogie), and ( )w (Eq. (4)) for the wheelset.

In Eq. (1), FV is the force vector:

FV ¼ FV
g þ FV

v ð5Þ

where FV
g is the gravitational force vector of the vehicle, and FV

v is
the inertial force vector – centrifugal forces and Coriolis forces
due to the curved path. For a single rigid body i, the inertial force

vector Fi
v (due to the curved path) is

Fi
v ¼ �mi

IL
i tð ÞT IciR � IRH

i tð ÞT IRI
i
hh IRc

i
a þ IRx

i � IRI
i
hhIRx

i
� �� �

ð6Þ

where IRxi is the angular velocity vector defined in the body-fixed
system, while vectors IciR and IRcia contain additional quadratic
velocity terms, produced during the time-differentiation of the
absolute translational and the absolute angular velocities, respec-
tively [18].

In Eq. (1), kN and kT are the normal and the tangential contact
force vectors, respectively (to be discussed in Section 2.3); WV

N

and WV
T are the direction matrices of the corresponding contact

forces kN and kT [20]. Throughout this paper, the subscripts N
and T, respectively, stand for the normal and the tangential direc-
tions of contact. The only nonzero entries in matrices WV

N and WV
T

correspond to the wheels of the vehicle. For the upper part of the
vehicle, i.e., the car body and the bogies, the pertinent sub-
matrices are zero [20].

2.2. Modelling of the bridge

The bridge is modeled by 3D Euler–Bernoulli beam elements,
using linear and cubic (Hermitian) shape functions [21]. Six DOFs
are considered per node: three translations and three rotations
with respect to the X;Y and Z axes accordingly.

After assembly, the mass matrix MB and the stiffness matrix KB

for the entire bridge are obtained in the global system. The damp-
ing matrix CB is assumed to be of the Rayleigh type and calculated
by setting the damping ratios of the first twomodes to be 0.02 [21].
The equation of motion for the bridge is

MB€uB þ CB _uB þ KBuB þWB
NkN þWB

TkT ¼ FB ð7Þ
where uB is the bridge displacement vector and FB is the vector of
the loads acting on the bridge; WB

N and WB
T are the contact force

direction matrices for the bridge, which contain linear shape func-
tions for the axial and torsional DOFs, and cubic (Hermitian) shape
functions for the flexural DOFs. The only nonzero entries in the WB

N

and WB
T matrices correspond to the DOFs of the bridge elements in

contact with the wheels of the vehicle [20].

2.3. Modelling of interaction between the two sub-systems

To derive the coupled equation of motion for the VBI system,
firstly the pertinent matrices and vectors of the two individual sub-
systems in the equations of motion are gathered as:

M� tð Þ€uþ C _uþ Ku�Wk ¼ F ð8Þ
where the global mass matrix M�ðtÞ, global stiffness matrix K and
global damping matrix C are

M� tð Þ ¼ MV tð Þ 0

0 MB

" #
; C ¼ CV 0

0 CB

" #
; K ¼ KV 0

0 KB

" #
ð9Þ

The contact direction matrices WN and WT , the displacement vector
u and the force vector F for the whole system are constructed in an
analogous manner:

u ¼ uV

uB

" #
; F ¼ FV

FB

" #
; k ¼

kN

kT

" #
;

W ¼ WN WT½ �; WN ¼ WV
N

�WB
N

" #
; WT ¼ WV

T

�WB
T

" #
8>>>>><
>>>>>:

ð10Þ

A key to solving the VBI problem is the treatment of the cou-
pling contact forces. The present study adopts a ‘‘rigid contact”
approach, and calculates a set of equivalent contact forces per
wheelset, considering two contact forces per wheelset (i.e. one
per wheel) in the normal direction, and one contact force in the
tangential direction (the resultant of the contacts at the two
wheels) in Fig. 1b [20]. The ‘‘rigid contact” approach assumes no
separation/uplifting in the normal direction and no sliding in the
tangential direction. On the acceleration level, this kinematic con-
straint implies that the relative acceleration €g between the wheel
and the rail is zero [20]:

€g ¼ WTM�hþ Gkþ �w ¼ 0 ð11Þ
where matrix G is equal to G = WTM��1W, and its inverse G�1 repre-
sents the mass activated by the contact interaction. The vector h
contains all non-contact forces:

h ¼ F tð Þ � C _u� Ku ð12Þ
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and �w (Eq. (13)) is the vector of the additional generalized velocity
terms [20]:

�w ¼ 2vW0T _uþ v2W00Tu ð13Þ
where ( )0 denotes differentiation with respect to the arc length si.
Eqs. (12) and (13) allow the calculation of the contact forces vector
k:

k ¼ �G�1 WTM��1hþ �w
� �

ð14Þ

Therefore, the equation of motion for the coupled vehicle-
bridge system becomes

M� tð Þ€u tð Þ þ C� tð Þ _u tð Þ þ K� tð Þu tð Þ ¼ F� tð Þ ð15Þ
with

C� tð Þ ¼ E�W tð ÞG tð Þ�1WT tð ÞM� tð Þ�1
h i

Cþ 2vW tð ÞG tð Þ�1W0T tð Þ

K� tð Þ ¼ E�W tð ÞG tð Þ�1WT tð ÞM� tð Þ�1
h i

Kþ v2W tð ÞG tð Þ�1W00T tð Þ

F� tð Þ ¼ E�W tð ÞG tð Þ�1WT tð ÞM� tð Þ�1
h i

F tð Þ

8>>>><
>>>>:

ð16Þ
where E is the identity matrix. Note that the mass matrix, the
stiffness matrix, the damping matrix and the loading vector of the
coupled system are all time-dependent [20].

3. Review of conditions of resonance and cancelation of the
interacting vehicle-bridge system

3.1. Resonance of a simply supported bridge

According to Yang et al. [2], the critical vehicle speed for the
resonance condition of a simply supported bridge is

vB
res;n;i ¼ 3:6

f Bnd
V

i
km=h;with i ¼ 1;2;3 . . . ð17Þ

where f Bn is the bridge frequency of the nth mode in Hz and dV is the
length of each vehicle. The critical vehicle speed of the bridge reso-
nance in Eq. (17) is not directly affected by the span length of the
bridge. A particular goal of this study is to verify that Eq. (17) is
not only applicable to simply supported bridges, but also to other
types of bridges, i.e., continuous bridges.

The critical speed for the cancelation of a simply supported
bridge is calculated as [2]:

vB
can;n;i ¼ 3:6

2f BnL
B

2i� 1
km=h; with i ¼ 2;3 . . . ð18Þ

where LB is the span length of the simply supported bridge.

3.2. Resonance of train vehicles

According to Yang and Yau [17], the critical speed of the vehicle
resonance for a train traveling over a series of simply supported
beams is

vV
res;n;i ¼ 3:6

f Vn L
B

i
km=h; with i ¼ 1;2;3 . . . ð19Þ

where f Vn is the frequency of the vehicle of the nth mode.

3.3. Optimal design criterion

Once the conditions of cancelation are met, the resonance peak
can be effectively suppressed, even when the conditions of reso-
nance are satisfied [2]. Based on the phenomena of cancelation,
Yang et al. [2] proposed an optimal bridge span/car length ratio
which suppresses the resonance response:

LB

dV ¼ i� 0:5; with i ¼ 2;3 . . . ð20Þ

where i is an integer denoting the order of cancelation, as in

Eq. (18). Hence, given the vehicle length dV of a specific train model,
the designer can determine the optimal span length LB of the bridge.
Furthermore, when the span length is interpreted as the character-
istic length [22], the optimal criterion, being independent of the
train speed, can be applied to a wide range of simple and continu-
ous beams. A particular goal of this study is to extend the optimal
criterion Eq. (20) to more types of resonance, e.g. in the radial direc-
tion, aside from the vertical direction (see Figs. 4 and 5 later on).
4. Parametric study and discussions of the results

4.1. Single-span curved simply supported bridges subjected to a series
of moving vehicles

This section deals with the resonance of single-span horizon-
tally curved simply supported bridges subjected to a series of mov-
ing vehicles. The focus is on the response of both the bridge and the
fully 3D moving vehicles under the bridge resonance condition.
Fig. 3 shows a series of (ten) identical vehicles running over a
single-span horizontally curved simply supported bridge. The
properties assumed for the curved bridge of a single-line railway
are: Young’s modulus E = 28.25 GPa, mass per unit length
m = 22.40 t/m, flexural moment of inertia Izz ¼ 8:75 m4 in the
lateral direction, and Iyy ¼ 4:11 m4 in the vertical direction,

torsional constant J = 12.87 m4, length of each span LB ¼ 32 m
[23], and radius of the curvature R = 5000 m.

Based on the modal analysis of the finite element model, the
natural frequencies of the bridge are 3.49 and 5.09 Hz for the ver-
tical and the lateral direction, respectively. The length of the vehi-

cle considered is dV ¼ 25 m. Therefore, according to Eq. (17), the
predicted critical speeds v of the bridge resonance in the vertical
and the radial directions are 314 and 458 km/h, respectively.
Meanwhile, the predicted critical speeds of the bridge cancelation
in the vertical and the radial directions are 268 km/h and 391 km/
h, respectively (Eq. (18)). Fig. 4 shows the time history response of
the vehicle-bridge system (of Fig. 3) as calculated with the
proposed simulation approach. The symbol e.g. vB

res=can;n;i in Fig. 4

denotes the critical speed corresponding to nth mode of the bridge

and ith order of the resonance/cancelation, as in Eqs. (17) and (18).
It can be seen that the analytically predicted critical vehicle speeds,
indeed cause the bridge resonance and the bridge cancelation.
Fig. 4e and f also show that, under either the vertical or the radial
resonance of the bridge, the later the vehicle enters the bridge, the
higher the amplification of acceleration it sustains, due to the accu-
mulated vibration of the bridge; an observation consistent with the
results of Ref. [1].
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According to the optimal design criterion of Eq. (20), when i = 2,
the optimal span/car length ratio is 1.5. Given the span length is

32 m, the optimal car length is dV ¼ 32=1:5 ¼ 21:33 m. The black
dotted lines in Fig. 4 (a and b) show the response of the bridge

when the optimal design criterion (of cancelation) is met (i.e. dV

and LB satisfy Eq. (20)). Observe that no resonance response occurs
(in the vertical or the radial direction) even though the vehicles
travel over the bridge at the critical resonance speed (Fig. 4a
and b).

Fig. 5 depicts the effect of vehicle speed v on the response of the
bridge in dimensional and dimensionless terms. Both the vertical
displacement (Fig. 5a) and the radial displacement (Fig. 5c) of the
midpoint of the bridge rise up drastically in the vicinity of the
critical speeds, due to the resonance induced by the repetitive
vehicular loading. As expected, the vertical displacement is not
affected by the radius of the curved bridge, and the time histories
for different bridge-radii collapse to a single curve (Fig. 5a). In gen-
eral, the effect of the centrifugal force can be broken down to a
quasi-static part and a dynamic part. The quasi-static effect of
the centrifugal force can be inferred from a comparison of the
dimensional with the dimensionless response (Fig. 5c vs. d). For
increasing vehicle speed v, and a given radius R, the dimensional
(radial) response displacement of the bridge shows an approxi-
mately parabolic pattern following the magnitude of the centrifu-
gal forces miv2/R. This parabolic pattern is disrupted by a peak at
the dimensionless velocity SB ¼ 0:78, which can be attributed to
the dynamic resonance. The dynamic effect is better understood
through the dimensionless results (i.e., in terms of the impact fac-
tor Fig. 5d). When the response is scaled with respect to the
(pseudo-static) effect of the centrifugal force, the dimensionless
impact factor spectra in the radial direction, for different radii of
curvature or different speeds, collapse to a single curve. Thus, these
dimensionless spectra bring forward the dynamic effect of the
centrifugal force and unveil a dynamic resonance precisely at the
dimensionless speed predicted by the analytical methods. Some
of the critical speeds appearing in Figs. 4 and 5 are 458 and
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391 km/h. Note that the present results are valid provided that no
hunting motion instability occurs. This limitation can be avoided
using a more detailed contact model (see Zeng & Dimitrakopoulos
[25]), which, though, is beyond the scope of the present study.

According to Yang et al. [2], the dimensionless speed parameter
SB of the bridge (Fig. 5b and d) is defined as the ratio of the excita-

tion frequency of the moving vehicles to the frequency f Bn of the
bridge as

SB ¼ v
f BnL

B
ð21Þ

where the excitation frequency of the moving vehicles is v=LB, with
LB denoting the characteristic length of the bridge. The dimension-
less impact factor I is [2]:

I ¼ RdðxÞ � RsðxÞ
RsðxÞ ð22Þ

where RdðxÞ and RsðxÞ are the peak dynamic and static displace-
ments, respectively, of the bridge at the position x, due to the pas-
sage of the moving vehicles. In the vertical direction, RsðxÞ is
calculated as the peak static displacement under the vehicle’s
weight. In the radial direction, RsðxÞ is taken as the peak pseudo-
static response, calculated under the pseudo centrifugal force
miv2=R, where mi is the lumped mass of the vehicle. The SB value
corresponding to the condition of resonance is [2]:

SB ¼ dV

LB
ð23Þ

For a vehicle of length dV ¼ 25 m and a bridge of span LB ¼ 32 m,
the resonant speed parameter computed from Eq. (23) is
SB ¼ 0:78. Based on the present numerical analysis, the resonance
speed parameters for the vertical (Fig. 5b) and the radial (Fig. 5d)
directions agree well with the same predicted speed parameter
SB ¼ 0:78. The dimensionless impact factors show the same pattern
for the vertical and the radial directions of the bridge. Particularly,
the dimensionless impact factor spectra in the radial direction
collapse to a single curve for different radii of the bridge (Fig. 5d),
as the centrifugal forces in the radial direction are determined by
the combined effect of the radius of the curved bridge and the
vehicle speed. The black dotted lines in Fig. 5b and d correspond
to the optimal criterion in Eq. (20) by adjusting the vehicle length

dV ¼ LB (32 m)/1.5 = 21.33 m. The first resonance peak response is
suppressed when the optimal design criterion is satisfied (Fig. 5b
and d).
4.2. Vehicles running on multi-unit horizontally curved simple bridge

In general, high-speed railway (HSR) bridges are short and with
simple supports, yet, the length of the entire bridge system can be
very long, consisting of a large number of bridge units. For
instance, the 164 km Danyang-Kunshan Grand Bridge of the
Beijing-Shanghai HSR line is the longest bridge system in the world
[24], which contains over 4000 bridge units. In order to increase
the efficiency of bridge construction, while reducing the cost of
bridge manufacturing, usually the simply supported bridges and
continuous bridges, adopted in the same railway lines, share the
same standard span length [23]. Therefore, for each train vehicle
traveling over a multi-unit bridge with the same span length
(or characteristic length), the periodical excitation transmitted
from the bridge may result in the resonance of the vehicle, if the
excitation frequency coincides with a natural frequency of the
vehicle. When in resonance, the dynamic response of the vehicle
is amplified as the vehicle travels over more bridges (Fig. 6). This
section extends the work of Yang and Yau [17] by studying the
resonance of a single fully 3D vehicle moving over a multi-unit
horizontally curved railway bridge. Importantly, the present anal-
ysis takes into account not only the vertical and the pitching DOFs
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Fig. 6. A series of vehicles traveling over multi-unit horizontally curved simple bridge.

Table 1
Natural frequencies and critical resonance speeds from Eq. (19) for different vibration modes of the vehicle.

n = 1 2 3 4 5

f Vn (Hz) 0.54 0.78 0.90 1.43 1.60

Mode Lateral–rolling Lateral–rolling Vertical Yawing Pitching
vV
res;n;1 (km/h) 62 90 102 164 184
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of the moving vehicles, but also the lateral and the rolling DOFs of
the moving vehicles.

The proposed numerical analysis scheme is used to simulate
one single train vehicle moving over a series of simple bridges/
beams. The multi-unit bridge consists of 10 identical simply-
supported curved units of span length 32 m and a constant radius
of 5000 m. The material properties and section properties adopted
are: Young’s modulus E = 28.25 GPa, mass per unit length
m = 41.74 t/m, flexural moment of inertia Izz ¼ 74:42 m4 in the
(a) first lateral-rolling mode (b) second later

(d) yawin

(e) pitchin

fV1 = 0.54 Hz fV2 = 0.7

fV4 = 1.4

fV5 = 1.6

Fig. 7. Five vibration modes of
lateral direction, and Iyy ¼ 7:84 m4 in the vertical direction, and
torsional constant J = 15.65 m4 [2]. The vehicle model corresponds
to the China-star high speed train [19]. Table 1 lists the first
five natural frequencies and the corresponding vibration modes
of the vehicle adopted, based on the modal analysis of the
multibody vehicle system. Table 1 also summarizes the pertinent
critical speeds, predicted from Eq. (19), which can trigger the
vehicle resonance. Fig. 7 sketches the first five modes of the vehicle
model.
al-rolling mode

g mode

g mode

8 Hz fV3 = 0.90 Hz

3 Hz

0 Hz

the vehicle model adopted.
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Fig. 8 shows the accelerations of the car body of the vehicle
under the conditions of resonance for different modes of the vehi-
cle. Again, the critical speeds in Fig. 8 agree well with the predicted
analytical critical speeds listed in Table 1. When in resonance, the
acceleration of the car body keeps increasing (for all five DOFs in
Fig. 8) as the vehicle moves over more bridge units. Fig. 8 also
investigates the effect of damping of the vehicle suspension system
on the vehicle resonance response. In the legend of Fig. 8, the sym-
bol CV (the black dotted line) stands for the full damping value of
the whole vehicle system with the data given in [19]. When the full
damping is assumed, the response of the vehicle does not build up,
even when the vehicle travels over more bridges under resonance.
The resonance phenomena of the vehicle emerge only when the
damping of the vehicle is reduced (e.g. to 10% of the full value CV

– the gray solid 0.1CV line in Fig. 8). Consequently, the presence
of damping in the suspension system prevents the resonance
response of the car body to build up even when resonance condi-
tions of the vehicle are met.

Fig. 9 shows the time histories of the bridge displacement of the
midpoint of different spans induced by the vehicle’s resonance. The
points of interest are the midpoints of the 1st, the 5th, and the 9th
span of the bridge. Fig. 9a, b and d shows the radial displacements
of different spans of the bridge under the vehicle’s lateral-rolling
and yawing resonance. Fig. 9c and e show the vertical displace-
ments of different spans of the bridge under the vehicle’s vertical
0 2 4 6 8 10
-0.02

-0.01

0

0.01

0.02

0 2 4 6 8 10
-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10

-1

0

1

0 2 4 6 8 10
-2

-1

0

1

2

(e) 

aV
y2

(m
/s

2 ) 

(c) 
vV

res,2,1 = 90 km/h 

vV
res,3,1 = 102 km/h 

aV
z  (m

/s
2 ) 

(g) 
vV

res,5,1 = 184 km/h

aV
θ

(ra
d/

s2 ) 
aV

y1
(m

/s
2 ) 

(a) 
vV

res,1,1 = 62 km/h 

first lateral resonance

second lateral resonance 

vertical resonance 

pitching resonance 

× 10-4

× 10-3

dimensionless time (vt/LB) 

Fig. 8. Resonance response of the accelerations of the car body of the vehicle traveling o
the lateral, (d) the rolling, (e) the vertical, (f) the yawing and (g) the pitching accelerati
and pitching resonance. As revealed by Fig. 9a, b and d, under
the vehicle’s lateral-rolling and yawing resonances, the radial
displacements of the later spans of the multi-unit bridge are
slightly amplified due to the accumulated lateral vibrations of
the vehicle. The amplification effect of the vehicle’s resonance to
the bridge response in the vertical direction (Fig. 9c and e) is mar-
ginal (of second-order), compared with that in the radial (lateral)
direction. In general, it is concluded that the feedback effect of
vehicle’s resonance to the bridge response is quite small, particu-
larly for the vertical direction.

Fig. 10 shows the accelerations for all five DOFs of the car body,
i.e., lateral (radial), vertical, rolling, yawing and pitching, of the
vehicle against the speed. The horizontal axis represents the
dimensionless speed parameter SV of the vehicle:

SV ¼ v
f Vn L

B
ð24Þ

All the considered DOFs reveal a coincident resonance speed param-
eter of SV ¼ 1. The critical speeds in Fig. 10 agree well with the ana-
lytical predictions given in Table 1. The pertinent accelerations are
amplified in the vicinity of the resonance speeds. Particularly, the
critical speed vV

res;2;2 ¼ 45 km/h in Fig. 10a and vV
res;3;2 ¼ 51 km/h in

Fig. 10b are the second critical speeds, which are half of the first
critical speeds vV

res;2;1 ¼ 90 km/h and vV
res;3;1 ¼ 102 km/h of the lat-

eral resonance and the vertical resonance, respectively.
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4.3. Multi-span horizontally curved continuous bridges

This section examines the resonance condition of a multi-span
horizontally curved continuous bridge under the passage of a ser-
ies of (fifteen) vehicles (Fig. 11), which is common in railway engi-
neering [23]. This section extends the work of Yang et al. [26] and
Yau [27] by dealing with not only the vertical resonance, but also
the lateral resonance of the continuous bridge. The effect of the
Y
X

O

(b)

R

(a)

rigid ground

LB

plan view

Fig. 11. Multi-span horizontally curved continuo
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number of spans on the resonance of the continuous bridge is also
discussed.

Consider a horizontally curved continuous bridge of a single-line
railway with the properties [28]: Young’s modulus E = 35.50 GPa,
mass per unit length m = 11.69 t/m, flexural moment of inertia
Iyy ¼ 10:56 m4 in the lateral direction, and Izz ¼ 6:78 m4 in the
vertical direction, torsional constant J = 17.34 m4, and length of
each unit span LB ¼ 56 m. Three continuous bridges with different
Z
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Fig. 13. Vertical resonance displacement time histories of the first, middle and last span of a three-span continuous bridge, induced by the passage of fifteen identical
vehicles, for the first (a), (b) and (c) and second (d), (e) and (f) vertical modes.

Table 2
Natural frequencies and vibration modes of uniform continuous bridges.

n = 1 2 3 4 5 6 7 8

Three-span

f Bn hinged restraints 2.28 (lateral) 2.84 (vertical) 2.92 (lateral) 3.64 (vertical)

vB
res;n;1 (km/h) 204 255 262 327

f Bn free-mid restraints 0.28 (lateral) 1.02 (lateral) 2.28 (lateral) 2.84 (vertical)

vB
res;n;1 (km/h) 25 92

Five-span

f Bn hinged restraints 2.28 (lateral) 2.52 (lateral) 2.84 (vertical) 3.14 (vertical) 3.16 (lateral) 3.93 (vertical)

vB
res;n;1 (km/h) 204 255 284 354

f Bn free-mid restraints 0.16 (lateral) 0.42 (lateral) 0.60 (lateral) 1.48 (lateral) 2.28 (lateral) 2.84 (vertical)

vB
res;n;1 (km/h) 14 38 54

Seven-span

f Bn hinged restraints 2.28 (lateral) 2.41 (lateral) 2.76 (lateral) 2.84 (vertical) 2.99 (vertical) 3.26 (lateral) 3.44 (vertical) 3.85 (lateral)

vB
res;n;1 (km/h) 204 248 255 310

f Bn free-mid restraints 0.13 (lateral) 0.28 (lateral) 0.51 (lateral) 0.83 (lateral) 1.23 (lateral) 1.70 (lateral) 2.28 (lateral) 2.84 (vertical)

vB
res;n;1 (km/h) 12 25 46
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numbers of spans, i.e. three, five, and seven spans, are examined.
The boundary conditions at all supports are assumed as follows
(Figs. 12 and 13): the longitudinal, the vertical and the radial
displacement DOFs and the torsional rotation DOF are restricted,
0 100 200 300 400
2

4

6

8

0 100 200 300
0

0.5

1

1.5

 15 identical 3D vehicles 
 three-span continuous bridge 
uB: displacement of bridge  
 ()v: vertical, ()r: radial  
SB = v/(f B

nLB) IB: impact factor  
st: static, p-st: pseudo-static  

uB
v  (m

m
) 

vehicle speed v (km/h) 

uB
r  (m

m
) 

(c) 

(a) (

(

vB
res,2,1 = 

 255 km/h

vB
res,1,1 =  

204 km/h

B
r

B
r, 

p-
stmiddle span 

last span 

first span vB
res,3,1 =  

262 km/h

vB
res,4,1 =  

327 km/h

●
●
●
●
● ●
●

Fig. 14. Displacement response computed by the VBI analysis for the midpoint of differen
and (b) vertical, (c) and (d) radial direction; (a) and (c) dimensional, (b) and (d) dimens

0 100 200 300
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400
2

3

4

5

 15 identical 3D vehicles 
 continuous bridge with different spans 
uB: displacement of bridge midpoint 
 ()v: vertical, ()r: radial  
SB = v/(f B

nLB) IB: impact factor      
st: static, p-st: pseudo-static  

uB
v  (m

m
) 

vehicle speed v (km/h) 

uB
r  (m

m
) 

(c) 

(a) 
255 km/h

204 km/h

five-span 
seven-span 

three-span 

248 km/h

284 km/h

310 km/h
354 km/h

●
●
●
●
● ●
●

Fig. 15. Displacement response computed by the VBI analysis for the midpoint of the mi
identical vehicles: (a) and (b) vertical, (c) and (d) radial direction; (a) and (c) dimension
while the rotational (flexural) DOFs along the vertical and the radial
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cies of the bridge in the lateral and the vertical directions are 2.28
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and 2.84 Hz, respectively, irrelevant of the number of spans. The
critical vehicle speeds in Table 2 are computed from Eq. (17).

Figs. 12 and 13 plot the radial and the vertical displacement
time histories of the first, middle and last span of the three-span
continuous bridge in resonance, respectively. When the bridge is
in resonance, the displacements of the first, middle and last spans
in the radial and the vertical directions keep increasing as more
vehicles travel over the pertinent spans (resonance). The resonance
speeds in Figs. 12 and 13 all agree well with the analytical values
given in Table 2. Interestingly, for the second mode, no resonance
occurs for the middle span (Figs. 12e and 13e). Recall that [27], the
inflection point for the second mode of a three-span continuous
bridge is the midpoint of the middle span; hence there is no con-
tribution of the second mode to the resonance vibration of the
midpoint of the three-span continuous bridge (see Figs. 12 and 13).

Fig. 14 plots the effect of vehicle speed on the displacement
time histories of different points of a three-span continuous bridge,
in both dimensional terms and dimensionless terms. For the first
and the last spans two peaks appear in the vicinity of resonance
in the vertical direction (255 and 327 km/h in Fig. 14a) and in
the radial direction (204 and 262 km/h in Fig. 14c), which again
agree well with the speeds of Table 2. On the contrary, for the mid-
dle span only one peak occurs (255 km/h Fig. 14). In other words,
no resonance of the middle span occurs for the second mode in
the vertical direction (Fig. 13a) and in the radial direction
(Fig. 14c), which has also been explained in Figs. 12 and 13. When
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Fig. 16. Radial displacement response computed by the VBI analysis for the midpoint of
fifteen identical vehicles: (a) and (b) three-span, (c) and (d) five-span and (e) and (f) se
expressed in the dimensionless speed parameter SB, the vertical
and the radial dimensionless displacement time histories (impact
factors) reveal a coincident first resonance speed parameter of

SB1 ¼ 0:45, for the considered car length dV ¼ 25 m and span length

LB ¼ 56 m. The second resonance peak SB2 ¼ SB1 � f 2/f 1 ¼ 0:45�
1:28 ¼ 0:58 corresponds to the second mode.

Fig. 14 also shows the differences between the displacements of
different spans of the three-span continuous bridge. The resonance
speeds are the same for the three different spans, both in the
vertical and the radial directions. The middle span yields smaller
dimensional displacements (Fig. 14a and c), but larger dimension-
less displacements (Fig. 14b and d), compared with the same
displacements of the first and the last spans. Due to the symmetry
of the continuous bridge, the first and the last spans exhibit similar
displacement pattern, both in dimensional and dimensionless
terms.

Fig. 15 compares the resonance conditions of continuous
bridges with different numbers of spans, i.e., three, five, and seven
spans. Again, the resonance speeds of the continuous bridges agree
well with the analytical ones given in Table 2. For continuous
bridges with the same characteristic span LB, the first critical reso-
nance speeds are the same, regardless the number of spans. The
increase in the number of spans makes the distribution of frequen-
cies denser [27]. In Fig. 15, more peaks appear for continuous
bridges with seven and five spans than with three spans. The
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increase of the number of spans results in both smaller dimen-
sional displacement and lower dimensionless impact factor. The
more spans a continuous bridge has, the more vibration energy,
excited by the vehicular loads, is transferred to the adjacent spans,
and therefore vibration is diminished [27].

Finally, Fig. 16 revisits the behavior of the three, five and seven-
span continuous bridges of Figs. 12–15 for different support condi-
tions. Specifically, it is assumed that the radial displacement is free
at all middle supports. Hence, in the radial direction, the bridges
are hinged at their end-supports, but free to translate at all middle
supports. This reduces significantly their lateral stiffness and the
frequencies of the lateral modes (italic values in Table 2). Again,
the critical speeds at the radial spectra of Fig. 16 agree well with
the analytical ones given in Table 2. Note that, while the difference
in boundary condition reduces the dimensional critical speeds of
bridge resonance, the dimensionless critical speed parameters
remains the same in value (i.e. 0.45 in Fig. 16).
5. Conclusions

This study investigates the resonance behavior of the interact-
ing vehicle-bridge system with the proposed 3D vehicle-bridge-
interaction analysis approach. The simultaneous response of the
vehicle and the bridge is captured under the resonance conditions
of both the vehicle and the sustaining bridge.

The critical vehicle speeds from the proposed numerical reso-
nance analysis scheme agree well with the analytical predicted
values for the resonance of bridges, the cancelation of bridges
and the resonance of vehicles. The critical vehicle speed in the
equation for predicting the bridge resonance (Eq. (17)) is not
directly affected by the span length of the bridge. As verified by
the numerical study, the equation is not only applicable to simply
supported bridges, but also to other types of bridges, like the
continuous bridges with uniform span length.

The accumulated vibrations of the bridge under the bridge res-
onance conditions have a pronounced effect on the response of the
running train vehicles. When a bridge is set in resonance, the later
the vehicle enters the bridge, the higher the amplification of the
acceleration of the vehicle sustained by the bridge.

The presence of damping in the suspension system prevents the
resonance response of the car body to build up, even when the res-
onance condition of the vehicle is met. The vehicle’s lateral-rolling
and yawing resonance slightly amplifies the radial displacements
of the later spans of the multi-unit bridge. The vehicle’s vertical
and pitching resonances have marginal effect (of second-order)
on the vertical displacements of the bridge.

For simple bridges, the dimensional vertical displacement of the
midpoint of the bridge is not affected by the radius of the curved
bridge. The dimensional radial displacement of the midpoint of
the bridge increases with the increase of the speed of the vehicle,
but deceases with the increase of the radius of the curved bridge.
The spectra of the dimensionless impact factors against the pro-
posed dimensionless speed parameter in the vertical and the radial
directions display the same pattern. The resonances of the bridges
reveal a coincident resonance speed parameter in the vertical and
the radial directions. The dimensionless impact factor spectra in
the radial direction collapse to a single curve for different radii of
the bridge.

For continuous bridges with the same length for each span, the
critical speeds for the first resonance to occur are the same, both in
the vertical and the radial directions. No resonance of the middle
span of occurs for the second mode. The first and last spans exhibit
similar displacement pattern, both in dimensional and dimension-
less terms. The increase in the number of spans makes the distribu-
tion of resonances denser, which results in both smaller
dimensional displacement and dimensionless impact factor. The
free-to-translate condition for the radial direction at all middle
supports of the continuous bridges reduces the dimensional critical
speed of bridge resonance.
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