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SUMMARY

This paper establishes a scheme for the seismic analysis of interacting vehicle–bridge systems. The focus
is on (horizontally) curved continuous railway bridges and frequent earthquakes. Main features of the pro-
posed scheme are (i) the treatment of the dynamics in all three dimensions (3D), employing an additional
rotating system of reference to describe the dynamics of the vehicles and a realistic 3D bridge model; (ii) the
simulation of the creep interaction forces generated by the rolling contact between the wheel and the rail;
and (iii) the integration of the proposed scheme with powerful commercial finite element software, during
the pre-processing and post-processing phases of the analysis. The study brings forward the dynamics of
a realistic vehicle–bridge (interacting) system during seismic shaking. For the (vehicle–bridge) case exam-
ined, the results verify the favorable damping effect the running vehicles have on the vibration of the deck.
By contrast, the study stresses the adverse influence of the earthquake-induced bridge vibration on the rid-
ing comfort but, more importantly, on the safety of the running vehicles. In this context, the paper unveils
also a vehicle–bridge–earthquake timing problem, behind the most critical vehicle response, and underlines
the need for a probabilistic treatment. Among the 20 sets of historic records examined, the most crucial for
the safety of the vehicles are near-fault ground motions. Finally, the study shows that even frequent earth-
quakes, of moderate intensity, can threaten the safety of vehicles running on bridges during the ground
motion excitation, in accordance with recorded accidents. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last 15 years, railway networks are expanding worldwide, and especially in Asia. Character-
istically, contemporary high-speed railways (HSRs) use a high ratio of bridges. As a reference, from the
1318-km long Beijing–Shanghai HSR line in China, 1059 km is on (244) bridges, constituting 80.5%
of the whole line [1]. Similarly, the total bridge length of the North-to-South Line from Taipei to Kaoh-
siung, in Taiwan, reaches 73% [1] of the whole line. With the length and the number of HSR bridges
increasing, the possibility of train vehicles encountering an earthquake while crossing a bridge also
increases [2]. Two alarming accidents (Figure 1) were already reported in the last 10 years. On Octo-
ber 23 2004, a train running at a speed of 200 km/h derailed during the Niigata-Chuetsu Earthquake
with a magnitude of 6.8, near Niigata City, Japan, ending the 48-year safety record of the Shinkansen
railway [3]. Six years later, on March 4, 2010 in southern Taiwan, a high-speed train derailed during
the Jiashian earthquake with a magnitude of 6.4 and 53 km from the epicenter [4].
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Figure 1. Derailment accidents of high-speed trains in (a) Japan [5] and in (b) Taiwan [6].

Given the potentially devastating consequences of similar future accidents, there is a growing need to
shift the focus of analysis, and eventually design, from the seismic performance of the bridge structure,
to the seismic performance of the interacting vehicle–bridge system. This is particularly true in light
of the expanding railway bridges, the increasing operating speeds, and the strict safety requirements
of conventional and HSR transportation [3]. This is an interdisciplinary research challenge, involving
the treatment of the dynamics of the bridge structure (civil-earthquake engineering), together with the
dynamics of the vehicle (mechanical engineering). Traditionally, the interaction with moving vehicles
and the seismic shaking have been considered separately when analyzing the dynamics of bridges.
Currently, there is a vast body of research on the seismic response of bridges separated from the running
vehicles [7, 8], as well as on the dynamic vehicle–bridge interaction (VBI), without the consideration
of earthquakes (e.g. [9] and references therein). By contrast, studies on the combined consideration of
the effect of earthquakes on the interacting vehicle–bridge system are still scarce.

More specifically, Yang and Wu [10] investigated the stability of 3D train vehicle models, stationary
or moving, on bridges shaken by earthquakes. They examined four sets of historical earthquake records
scaled to a peak ground acceleration of 0.08 g. They concluded that, for the examined ground motions
and bridge, a train was safer when stationary. That study also stressed the importance of the vertical
ground motion component on the stability of the vehicle. Kim et al. studied the seismic response of
interacting vehicle–bridge systems under moderate earthquakes, for steel monorail bridges [11], and
for highway viaducts [12]. They showed that it is not realistic to treat the train vehicle merely as addi-
tional mass, as suggested by most seismic codes worldwide, for example, [13]. The seismic response
of the bridge was reduced [11, 12] when the dynamics of the vehicles were properly simulated. On the
contrary, the seismic response of the bridge was amplified when the vehicles were treated as additional
vertical masses. The conclusions of the more recent similar study of He et al. [14] are in agreement
with those of [11, 12]. Tanabe et al. [15, 16] studied numerically the behavior of the Shinkansen trains
and railway bridges during earthquakes and checked experimentally part of their results. They also pro-
posed [17] a method to capture numerically the interaction between the wheel and the rail in both the
pre-derailment state and the post-derailment state, during an earthquake. Ju [4] investigated the derail-
ment of high-speed trains moving on multi-span simply supported bridges due to historical earthquake
records acting in all three directions. Matsumoto et al. [18] studied the running safety of railway vehi-
cles on bridges subjected to earthquakes using an in-house computer simulation software. That study
considered both the nonlinearity of the primary and secondary suspensions of the vehicles and the
hysteretic characteristics of the bridge. Xia et al. [3] examined spatially non-uniform seismic ground
motions and argued that not considering the seismic wave propagation effect leads to unsafe results
regarding the vehicle running safety during earthquakes. Du et al. [19] extended the study of Xia et
al. [3], taking into account the possible separations and recontact between the wheel and the rail. The
results indicated that the wheel–rail separation time duration increased as the train speed increased,
under non-uniform seismic ground motions. The analytical study of Yau and Fryba [20,21] focused on
the vibration of a suspension bridge due to a series of equidistant, identical moving loads, and under
the propagation effect of the seismic waves in the vertical direction. That study concluded that the
contribution of the higher modes on the peak acceleration of a long-span suspension bridge is signif-
icant and needs to be taken into consideration. Further, Yau [22] investigated the dynamic interaction
of maglev trains moving over a suspension bridge under horizontal ground motions and stressed the
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importance of the wave propagation effect on the dynamic response of the maglev vehicles. Zhang
et al. [23] examined the seismic non-stationary random response of 3D train–bridge systems. Recently,
Montenegro et al. [24] studied the dynamic stability of trains moving over bridges subjected to seis-
mic excitations. Further, Montenegro et al. [25] proposed a wheel–rail contact model for analyzing the
nonlinear lateral train–structure interaction. The model was verified with experiments performed on a
rolling stock plant simulating track deviations caused by earthquakes.

This research is motivated by the need to elucidate the VBI dynamics between trains and railway
bridges, during seismic excitation. The focus is on horizontally curved railway bridges. Recently, the
authors proposed an analysis approach capable of tackling the VBI problem for curved (or straight)
bridges and different types of vehicles [9]. That study [9] shed light on the VBI in curved bridges, but
no seismic excitation was considered. Herein, the framework is extended in three ways: (i) the analysis
considers a realistic bridge model; (ii) the interaction model simulates the creep forces generated by
the rolling contact; and (iii) the analysis scheme is extended to account for the seismic ground motion
excitation. The proposed approach covers also the (simpler) case of straight bridges and different types
of vehicles.

2. PROPOSED ANALYSIS OF INTERACTING VEHICLE–BRIDGE SYSTEMS

Vehicle–bridge interaction refers to the coupling between the dynamic response of the vehicle and the
supporting bridge: the vehicular loading on the bridge, causes the simultaneous vibration of the bridge,
which in turn, acts as excitation for the vehicles. In general, the analysis of the VBI problem can be
broken down to three main tasks: (i) the bridge modeling; (ii) the simulation of the vehicles and their
motion; and (iii) the treatment of the interaction forces [26]. Sections (2.1) to (2.3) discuss the three
tasks one by one.

2.1. Modeling of the bridge

The reference (hypothetical) bridge of this study is a horizontally curved, two-way (double-line), rail-
way bridge (Figure 2). The bridge deck is a continuous prestressed concrete box girder with a total
length of 207 m (Figure 2), which consists of five spans (36 + 45 � 3 + 36 m) and a radius of curva-
ture R D 750 m. The section properties of the box girder are the torsional constant Ip D 48:81 m4,
the moment of inertia Iyy D 29:87m4, and I´´ D 205:66m4 accordingly and the cross-sectional area
A D 13:2 m2. The section of the reinforced concrete piers is a single-cell rectangular hollow section
with a constant thickness of 0.5 m and a constant height of 6 m along the transverse direction. Along
the longitudinal direction, the piers have a tapered section width (Figure 2(a)). At the top, the width
of the piers is 4.0 m, whereas the section widths at the pier bottom are 4.38, 4.79, 4.75, and 4.27 m,
respectively. The effective (reduced) flexural stiffness of the piers and the effective torsional stiffness of
the deck, due to the cracking of the concrete section during an earthquake, are taken half the uncracked
stiffness (assuming solid sections) [27]. The focus herein is on frequent, low-acceleration amplitude,
earthquake excitations that do not activate the isolation system (e.g. friction pendulum bearings) and

Figure 2. The curved two-way railway bridge examined: (a) elevation and (b) plan view.
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do not force the bridge to behave inelastically/nonlinearly. Therefore, the study assumes a monolithic
connection between the deck and the piers, and linear–elastic behavior of the bridge. For simplicity the
analysis assumes the piers are fixed at their base.

For the scope of the VBI analysis, the two main choices for the numerical simulation of a bridge,
are the finite element method (FEM) using the complete geometrical model [4,9,10,28] and the modal
superposition method [1–3,15–22]. The present study adopts the former method (FEM). The finite ele-
ment model of the bridge is built with ANSYS [29] software. The stiffness matrix KB , the mass matrix
MB , and the Rayleigh damping matrix CB are then exported to an in-house MATLAB [30] algorithm
developed and verified, previously in [9]. Typical Euler–Bernoulli beam elements are utilized, and a
damping ratio � D 5% [27] is assumed for the first two modes. The equation of motion (EOM) for the
bridge is

MB RuB C CB PuB CKBuB CWB
N�N CWB

T�T D FB (1)

where, the superscript ./B denotes the bridge system, uB is the bridge displacement vector, and FB is
the vector of the loads acting on the bridge. When the seismic loading is considered, the force vector
FB is

FB D �I RrOOGı
BMB (2)

where I RrOOG is the ground acceleration (Figure 5) at the base of the bridge and ıB is a unit vector
connecting the components of the earthquake excitation to the pertinent degrees of freedom (DOFs)
of the bridge. Following the standard convention, throughout this paper, the upper-dot denotes time
differentiation. In Eq. (1), �N and �T are the contact forces vectors (Sections 2.3.2 and 2.3.1, respec-
tively), and WB

N and WB
T are the corresponding direction matrices containing linear shape functions

for the axial and torsional DOFs, and cubic (Hermitian) shape functions for the flexural DOFs [28].
Figure 3 presents the results of the modal analysis of the bridge model. The results agree well with the
pertinent results of [31].

2.2. Simulation of the train vehicles and of the vehicle dynamics

In most recent studies on vehicle–bridge interaction (e.g. [1–4, 9–12, 14–19]), the vehicle model is a
multibody assembly. Similarly, herein, each train vehicle model (Figure 4) is composed of one car
body, two bogies, and four wheelsets, connected with linear springs and viscous dashpots, representing
the characteristics of the suspension system. All components are considered as rigid bodies, neglect-
ing their elastic deformations. The car body and the bogies have six DOFs each, with acceleration
vector Ruu

Ruu D
�
Rsu Ryu Ŕu R u R�u R�u

�T
(3)

Figure 3. The first six modes of the bridge: the periods/frequencies outside (inside) the parentheses are
based on the uncracked (effective) stiffness of the piers and the deck.
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where the superscript ‘T’ denotes the transpose of a matrix throughout this paper. Each wheelset has
five DOFs, with acceleration vector Ruw (Figure 4):

Ruw D
�
Rsw Ryw Ŕw R w R�w

�T
(4)

where s; y, and ´ are the longitudinal, lateral, and vertical displacements, respectively; while
 ; �, and � are the yawing, rolling, and pitching Euler angle (Figure 4(d)), respectively. Overall each
train vehicle has 38 DOFs.

The 3D seismic excitation activates the longitudinal DOFs of the vehicle (along the tangential sense
of the bridge). The analysis, therefore, considers the longitudinal dynamics of the vehicles, which in
the absence of the seismic excitation would be typically neglected; the train would run on the bridge at
a constant speed. Further simulation assumptions for the train vehicles are (i) The study assumes that
before the train enters the bridge, it travels on a rigid embankment with the same radius of curvature
and the same track irregularities as on the bridge. Therefore, the vehicles enter the bridge with non-zero
initial deformation: an approach similar to [32]. (ii) The train consists of a series of 10 identical train
vehicles, each of which and its corresponding DOFs, are independent of the adjacent vehicles, similar
to [2, 3]. This assumption is verified by checking the relative displacements between adjacent vehicles
after the analysis. (iii) The train travels over the bridge with a constant speed (e.g [2, 3]), which is a
limitation of the present approach for simplicity.

The simulation of the 3D dynamics of a vehicle traveling on a curved path is a challenging task.
The employed approach stems from the framework introduced in [33]. Key feature of the approach is
the use of a moving trajectory system TI . The trajectory system follows the vehicle along its curved
trajectory, with its origin O ti uniquely defined by the arc length si , and its longitudinal axis O tiX ti

set tangent to the curve, at the origin O ti (Figure 5).
The Newton–Euler equations describe the motion of the vehicle in terms of generalized trajectory

coordinates as [33]

MV RuV D FVe C FVv (5)

where MV is the mass matrix, FVe is the external forces vector, FVv is the inertial forces vector (due to
the curved path-rotating system of reference), and uV 2 R38;1 is the generalized displacement vector
of the vehicle, in the moving trajectory system. The nomenclature 2 R38;1 denotes a real matrix with
38 rows and one column. The superscript ./V stands for the vehicle subsystem.

To illustrate the details of Eq. (5), consider a specific rigid body component of the vehicle, for
instance, the car body of Figure 5 (indicated with a superscript i). The vector I RriOOir of the linear

Figure 4. The vehicle model adopted: (a) side view, (b) back view, (c) top view, and (d) coordinate system,
with the arrows indicating the degrees of freedom.
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Figure 5. The four coordinate systems employed to describe the dynamics of the vehicle during earthquake
excitation.

(translational) accelerations of the center of mass, of the rigid body, in the space-fixed system
is (Figure 5)

I RriOOir D I RrOOG C ILi TI Rui C I�
i
R (6)

where I RrOOG is the ground acceleration vector (Figure 5). Throughout this paper, left-subscripts
declare the coordinate system (Figure 5) each vector/matrix is referring to. Assuming that the seismic
ground motion is purely translational, the absolute angular acceleration of the rigid body IR˛

i , in the
body-fixed system, is

IR˛
i D IRHi

TI Rui + IR�
i
˛ (7)

Matrices ILi .t/ and IRHi .t/ arise because of the curvature of the path (rotating reference sys-
tem). They are time-varying velocity transformation matrices pertaining to the translational, and the
rotational, DOFs, respectively [33]. Vectors I� iR and IR�

i
˛ contain the additional quadratic velocity

terms, produced during the time differentiation of the absolute linear, and absolute angular velocities,
respectively [33].

The mass matrix of the rigid body i is [33]

Mi .t/ D ILi .t/Tmi ILi .t/C IRHi .t/TIRIi�� IRHi .t/ (8)

where mi is the mass and IRIi
��

is the inertia tensor about the principal axes of the rigid body i .
Particularly, for a single rigid body i , the seismic loading vector FiG (when considered) is

FiG D �m
i
ILi .t/TI RrOOG (9)

The inertial forces vector (due to the curvature of the path) is

Fiv D �m
i
ILi .t/TI� iR � IRHi .t/T

�
IRIi�� IR�

i
˛ C IR!

i �
�
IRIi�� IR!

i
��

(10)

where the centrifugal forces and the Coriolis forces arise because of the curvature of the vehicle’s path
and IR˛i is the angular velocity vector defined in the body-fixed system.

The EOM (5) for the vehicle subsystem (Figure 4) takes the form:

MV RuV C CV PuV CKV uV �WV
N�N �WV

T �T D FV (11)
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Figure 6. (a) The contact forces of the vehicle–bridge system and (b) creep forces of one single wheelset.

where MV , KV , and CV are the mass matrix, the stiffness matrix, and the damping matrix of the
vehicle system. For all cases examined in this study (Section 3), the details of KV and CV for the
vehicle in Figure 4 are given in Ref. [34]. The time-dependent mass matrix MV .t/ is derived using
Eq. (8). Figure 6 shows the normal contact forces �N and the creep forces �T (Sections 2.3.2 and
2.3.1). WV

N and WV
T are the corresponding pertinent contact direction matrices, where the subscripts

N and T stand for the normal and the tangential directions of contact throughout this paper (see, e.g.,
Pfeiffer and Glocker [35]).

2.3. Global equations of motion and interaction model

One way to derive the EOMs of the coupled vehicle–bridge system is by gathering the two subsystems
into a single one (e.g. [3,9–12,19]). Following this approach, the EOM’s of the coupled vehicle–bridge
system can be written as

M� RuC C PuCKu �WN�N �WT�T D F (12)

where the global displacement vector u, the global mass M�, stiffness K and damping C matrix,
and the global force vector F are created by assembling the pertinent matrices of the two individual
subsystems as

u D
�

uV

uB

�
; M� D

�
MV 0

0 MB

�
; C D

�
CV 0
0 CB

�
; K D

�
KV 0
0 KB

�
; F =

�
FV

FB

�
(13)

The symbol ./� indicates that the mass matrix is time dependent. �N contains the normal contact
forces discussed in Section 2.3.2, and �T is the creep forces vector:

�T D
�
�Tx �Ty �M´

�T
(14)

where �Tx is the longitudinal creep force, �Ty is the lateral creep force, and �M´ is the spin creep
moment vector (Figure 6(b)), calculated according to Section 2.3.1. The global direction matrices WN ,
WT can be broken down to

WN D

�
WV
N

�WB
N

�
;WT D

�
WV
T

�WB
T

�
D

" �
WV
Tx WV

Ty WV
M´

�
�
�

WB
Tx WB

Ty WB
M´

�
#

(15)
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with submatrices WTx , WTy , and WM´ (of each subsystem) corresponding, to the directions of �Tx ,
�Ty , and �M´, respectively. The study takes into account the track cant angle and the offsets of the
track (Figure 6(a)) as in [9]. The only non-zero entries in the contact direction matrices W are, at
each given time, those associated with the DOFs participating in the contact, and they change in time
as a function of the contact point location si [9]. While the train passes over the bridge, the contact
forces change with respect to both time (t) and space (si ). The contact forces �N and �T between
the wheels and the bridge (Figure 6) couple the two sets of equations, Eqs. (1) and (11), describing
the response of the two subsystems. A key point of the VBI problem is the treatment of the coupling
contact forces. This study calculates the contact forces along the normal direction and the tangential
direction differently.

2.3.1. Tangential contact forces – creep force model. The rolling contact between the wheel and
the rail generates creep forces and moments (Figure 6(b)). To account for the high creepage during
earthquakes, the creep force model adopted (Shen–Hedrick–Euristic modification [36]) considers the
nonlinear relationship between the creepage and the creep forces. The calculation of the lateral flange
contact forces follows the model in [37]. To demonstrate the calculation procedure, consider a single
wheel of the wheelset (denoted with the superscript i) of the vehicle model (Figure 6(b)). The longitu-
dinal creep forces �Tx

i , the lateral creep forces �Ty
i , and the spin creep moments �M´

i are connected
with the corresponding longitudinal creepage �x

i , the lateral creepage �y
i , and the spin creepage � 

i :

�T
i D fT i�T

i (16)

where �T
i is as in Equation (14), and similarly

�T
i D

�
�x
i �y

i � 
i
�T

(17)

while fT i is a creep coefficient matrix, defined as

fT i D "i

2
4�f33 0 0

0 �f11 �f12
0 f12 �f22

3
5 (18)

f11, f12, f22, and f33 are the pertinent Kalker’s creep coefficients [36]. The saturation constant "i is
calculated based on the creep forces [36]

"i D

´
1

ˇ i

h
ˇi � 1

3
ˇi
2
C 1

27
ˇi
3
i
for ˇi � 3

1

ˇ i
for ˇi > 3

(19)

where

ˇi D

r�
�Tx

i
	2
C
�
�Ty

i
	2

��N
i

(20)

� is the coefficient of friction and �N
i is the normal contact force. The creepage vector contains the

normalized relative velocity between the wheel and the rail and can be written as

�T
i D

1

Psi

�
WT

i
�T
Ppwi (21)
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where

WT
i D

�
WTx

i WTy
i WM´

i
�

(22)

For the calculation of the creep forces, the generalized velocity vector of the wheelset Puwi is augmented
with the angular pitching velocity of the wheelset P�wi D Pswi

ı
rw , where rw is the radius of

the wheel

Ppwi D Ai Puwi C bi P�wi (23)

Ai and bi are merely auxiliary matrices adjusting the dimensions of Puwi (Eq. (11)) and P�wi

Ai D
�

E 2 R5;5 0 2 R5;1

0 2 R1;5 0

�
; bi 2

�
0 2 R5;1

1

�
(24)

The creep force vector (16) becomes

�T
i D

1

Pswi
fT i
�
WT

i
�T
�

Ai Puwi C bi P�wi
	

(25)

Substituting vector �T from Eq. (25) to Eq. (12), the EOM takes the form

M� .t/ Ru .t/C
�
CC C� .t/

�
Pu .t/CKu .t/ �WN .t/�N .t/ D F .t/ � F� .t/ (26)

where C� and F� is the equivalent damping matrix and force vector due to the creep forces, given as

C� D
1

Psi
ATWT fTWT

TA; F� D
1

Psi
ATWT fTWT

Tb P�wi (27)

2.3.2. Normal contact forces – kinematical approach. To solve the global EOMs (26), the normal
contact forces need to be calculated first. The basic assumption of the calculation is that the wheel is
always in contact with the rail. This assumption implies that the relative distance between the wheel
and the rail gN is zero, that is, no separation between them occurs- a kinematic constraint. The relative
normal distance or normal contact displacement is

gN DWN
TuC rcN D 0 (28)

where rcN represents the track elevation irregularities [28]. The track irregularities are simulated as
a stationary stochastic process using the spectral representation method [28] and the German track
spectra [1]. On the acceleration level, the kinematical constraint of Eq. (28) becomes

RgN D 0 (29)

Differentiation of Eq. (28), with respect to time, gives the pertinent contact velocity

PgN D
d

dt

�
WN

TuC rcN
�
DWN

T PuC QwN (30)
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and the contact acceleration

RgN D
d2

dt2
�
WN

TuC rcN
�
DWN

T RuC NwN (31)

where ./0 stands for differentiation with respect to the space si and vectors QwN and NwN (Eq. (30))
contain the redundant terms of the time differentiations

QwN D vW0N
TuC vr0cN

NwN D 2vW0N
T PuC v2W00N

TuC v2r00cN
(32)

Solving the EOM (26) for Ru and substituting into Eq. (30) returns

RgN DWN
TM�.t/�1hCGNN�N C NwN (33)

where GNN DWN
TM�.t/�1WN and the h vector is equal to

h D
�
F � F�

�
�
�
CC C�

�
Pu �Ku (34)

The normal contact forces �N can now be derived from Eq. (33) with the help of Eq. (29):

�N D �GNN
�1
�

WN
TM�.t/�1hC NwN

	
(35)

Substituting Eq. (35) into the EOM (26) and regrouping yields the EOM for the coupled bridge–vehicle
system:

M� .t/ Ru .t/C C� .t/ Pu .t/CK� .t/ u .t/ D F� .t/ (36)

with

8̂̂
<̂
ˆ̂̂:

C� .t/ D
h
E �WN .t/G�1NN .t/WN

T .t/M��1 .t/
i �

CC C� .t/
�
C 2vWN .t/G�1NN .t/W00N

T
.t/

K� .t/ D
h
E �WN .t/G�1NN .t/WN

T .t/M��1 .t/
i

KC v2WN .t/G�1NN .t/W0N
T
.t/

F� .t/ D
h
E �WN .t/G�1NN .t/WN

T .t/M��1 .t/
i �

F .t/ � F� .t/
�
� v2WN .t/G�1NN .t/ r00cN

(37)

where E is a unit matrix and v the velocity of the vehicle. The stiffness matrix, the damping matrix,
and the loading vector of the whole system become time dependent. In addition, the global mass
matrix is also time dependent because of the curvature of the vehicle’s path. The EOMs (36) and (37)
are numerically integrated in a state-space form with the aid of the available in MATLAB ordinary
differential equation solvers for large, stiff systems [30, 38] verified previously [9]. The integration
scheme is of variable order, and it is based on the numerical differentiation formulas [38]. The adopted
absolute tolerance is 10�4. For the post-processing of the response (visualization of the results), and
not for the analysis of the response, this study employs again the commercially available software
ANSYS [29].
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3. RESULTS AND DISCUSSION

This section examines and compares the following three different scenarios: the dynamic interaction
between moving train vehicles and a railway bridge, in the absence of earthquakes (Section 3.1); the
seismic response of the bridge not considering the dynamics of the vehicles (conventional approach
in earthquake engineering, Section 3.2); and the seismic response of a VBI system (proposed model,
Section 3.3).

3.1. Dynamic vehicle–bridge interaction analysis

The dynamic VBI starts when the first vehicle enters the bridge and stops when the last vehicle of the
train leaves the bridge. After a vehicle leaves the bridge, its response is no longer of interest for this
study. The speed of the vehicle is 120 km/h (33.33 m/s), and the track cant angle (Figure 6) is � = 0.105.
The conicity of the wheels is 0.05, and the rails have a knife-edge shape, as in [37]. The train consists
of 10 identical vehicles, with the properties given in [34]. Because of the curvature of the bridge/rail,
the VBI triggers the response in the vertical, the radial (horizontal), and the torsional senses of the
bridge. The excitation stems not only from the track irregularities and the wheel hunting due to creep
but also from the centrifugal and the coriolis forces. The present section does not account for external
loading (e.g. earthquake excitation or wind loading). To compare the response of the bridge from the
present VBI analysis with the seismic response of the interacting vehicle–bridge system in Section 3.3,
this section considers both the uncracked stiffness and the effective stiffness of the piers and the deck.

Figure 7 plots the time histories of the midpoint displacement of the bridge (uBv and uBr ), together
with the accelerations of the car body of the first vehicle (aVv and aV r ). In the absence of earthquakes,
the accelerations of the later vehicles (from the second to the tenth one) are similar with those of the
first vehicle and therefore are omitted from Figure 7 for brevity. Under the passage of 10 identical
vehicles, the bridge deflects mainly along the radial direction (Figure 7(b)) than along the vertical
direction (Figure 7(a)). More importantly, the deformation patterns along the two directions of the
bridge are different. Figure 8 captures the deformed shape of the whole bridge (elevation view and plan
view) at different time instants, considering the effective stiffness of the piers and the deck. The three
time instants in Figure 8 correspond to the time the first vehicle reaches the first pier, the midpoint of
the middle span, and the end abutment, respectively. Consequently, running vehicles occupy solely the
side span of the deck at t D 1:1 s, half of the deck at t D 3:1 s, and the entire length of the deck
at t D 6:2 s. Along the vertical direction, the deck deflects as a continuous beam (Figure 8(a), (c),
and (e)). Along the radial direction, the bridge behaves almost as a bridge/beam simply supported at

Figure 7. The dynamic vehicle–bridge interaction (VBI) induced by 10 identical moving vehicles: (a) the
vertical and (b) the radial displacement time history of the midpoint of the bridge and (c) the vertical and

(d) the radial acceleration time history of the car body of the vehicle.
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Figure 8. The deformed shape of the whole bridge induced by 10 identical moving vehicles: (a), (c), and
(e) elevation view; (b), (d) and (f) plan view.

its end abutments (Figure 8(b), (d), and (f)). As a consequence, the lateral load on the deck builds up,
almost monotonically, as the moving vehicles accumulate on the bridge (Figure 8(b), (d), and (f)), and
accordingly varies the response displacement. In other words, in the lateral direction, the behavior of
the bridge due to the VBI resembles quasi-static loading conditions. The magnitude of the peak vertical
deflection (0.47 mm at t D 6:2 s) for the fully loaded deck is lower than that (0.50 mm at t D 3:1 s)
for a half-loaded deck (Figure 8(c) and (e)), as expected from the influence lines for static loads. Recall
though that the dynamic VBI is highly sensitive on the speed of the vehicle, which effectively defines
a loading frequency. For a different vehicle speed, the response of the vehicle–bridge system might
change dramatically [9].

The response of the vehicle is also of interest, in particular, with respect to its safety and comfort
[9]. A critical quantity for the riding comfort of the passengers is the acceleration of the car body.
Figure 7(c) and (d) plots the vertical and the radial accelerations of the car body of the first vehicle. As
expected, the maximum accelerations are well below the contemporary code limits for conventional
railway (e.g. [32]): 2.0 (for the vertical) and 1.5 m=s2 (for the radial acceleration). Two important
metrics of the safety of the running vehicle are [32] the derailment factor and the offload factor. The
derailment factor is the ratio of the lateral contact force and the vertical contact force acting on the
same wheel. The offload factor is the ratio between the dynamic reduction of the vertical contact force
(difference between the dynamic and the static values) and the static vertical contact force acting on
the same wheel [32]. The allowable values for the derailment factor and the offload factor are 0.8 and
0.6, respectively (e.g. [32]). The calculated peak derailment factor and peak offload factor are 0.15
and 0.12, respectively. Thus, when no earthquake is considered, all aforementioned comfort and safety
metrics for the vehicle are clearly satisfied.

3.2. Conventional seismic response analysis of the bridge

Herein, the focus is on frequent, and hence of low or moderate acceleration amplitude, earthquake
excitations. As a sample, Figure 9 plots a historic ground motion recorded on July 15, 2012, in Nak-
agawa, Japan, during a 4.2-magnitude earthquake event [39]. Figure 9 shows the time histories of
the three components of the ground acceleration: upper–down, north–south, and east–west , and their
Fourier spectra. The study assumes that the upper–down component acts along theZ-vertical direction
of the bridge system (Figure 2), the north–south component along the X -longitudinal direction, and
the east–west component along the Y -lateral direction.

The conventional approach in seismic engineering (e.g. EC8 [27]) is to represent the traffic during
an earthquake excitation as an additional quasi-permanent mass, which according to EC8 [27] for
railway bridges is  2;1Qk;1 D 0:3Qk;1. Further, the seismic analysis of the bridge adopts the effective
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Figure 9. The acceleration time histories (a, c, and e) and pertinent Fourier spectra (b, d, and f) of the three
components of the ground motion recorded on July 15, 2012 in Nakagawa Japan, at HKD station.

Figure 10. The displacement time histories (a and c) and the pertinent Fourier spectra (b and d) of the
response displacements of the midpoint of the bridge for the earthquake excitation of Figure 9. (a) and (b)

vertical, (c) and (d) radial degree of freedom. The dynamics of the vehicles are neglected.

stiffness of the piers and the deck, as described in Section 2.1. Figure 10 plots the time histories of the
bridge displacement for the earthquake of Figure 9 without considering the vehicle dynamics, together
with the pertinent Fourier spectra. The additional mass (0.3Qk;1) increases somewhat the natural period
of the bridge, and for this particular earthquake (Figure 9), it amplifies the vertical and the radial
displacements of the deck (Figure 10(a) and (c)). The predominant frequencies of the Fourier spectra
(Figure 10(b) and (d)) correspond to the first transverse and the third vertical eigenmodes of the bridge
(Figure 3), as expected. Figure 11 plots the deformed shape of the whole bridge, for the same three
time instants as Figure 8. The results of Figure 11 do not account for the additional 0.3Qk;1 mass;
hence, they are comparable with Figure 8. Note the different deformation patterns of the bridge are
due to the running vehicles (Figure 8) and due to the seismic loading (Figure 11), accordingly. For the
former, the bridge deflects almost statically downwards in the vertical direction and in the sense of the
centrifugal forces in the radial direction (Figure 8). The seismic-induced bridge vibration though is of
alternating sign (Figure 11) and of higher frequency (Figure 10).
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Figure 11. The deformed shape of the whole bridge induced by the earthquake excitation of Figure 9; (a, c,
and e) elevation view; (b, d, and f): plan view.

Figure 12. The displacement time histories of the midpoint of the bridge induced by 10 identical moving
vehicles and simultaneous earthquake excitation: (a and b) the vertical direction, and (c and d) the radial

direction.

3.3. Seismic response analysis of the interacting vehicle–bridge system

Conventional seismic response analysis of bridges focuses on the performance of solely the bridge
structure, under mostly strong (rare) earthquake events. In contrast, the scope of the present section is
not only to capture the behavior of the bridge but also importantly to examine how the seismic response
of the bridge affects the running train vehicles, under moderate (frequent) earthquakes. To this end, the
present study proposes the seismic response analysis of the interacting vehicle–bridge system. As a first
approach, it is assumed that the earthquake (of Figure 9) strikes when the first vehicle enters the bridge.
Later, different time instants the earthquake starts, as well as different sets of earthquake records, are
examined. Again, all the analyses in Section 3.3 assume that the effective flexural stiffness of the piers
and the effective torsional stiffness of the deck are equal to half the stiffness of the uncrakced sections.
The mass of vehicles is modeled directly through the properties of the 3D multibody model (i.e. mass
matrix MV ), and hence, no further increase of the mass (e.g. by 0.3Qk;1) is necessary.

Figure 12 plots the displacement time histories of the bridge along the vertical and the radial senses
of the (midpoint of the) deck, together with the pertinent Fourier spectra. Interestingly, the predominant
frequencies of the Fourier spectra in Figure 12(b) and (d) are the same as in Figure 10(b) and (d), indi-
cating that the presence of the moving vehicles does not affect significantly the eigenfrequencies of this
(particular) bridge. Figure 12 also demonstrates the combined effects of the dynamic VBI (Figure 7)
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Figure 13. The deformed shape of the whole bridge induced by 10 identical moving vehicles and
simultaneous earthquake excitation; (a, c and e) elevation view; (b, d and f) plan view.

and the seismic shaking (Figure 10). Under seismic excitation (Figure 10), the deck vibrates about its
unloaded (zero deflection) geometry. However, when the interaction with the vehicles is included in
the analysis (Figure 12), the vibration of the deck takes place about its deflected geometry.

Figure 13 displays the deformed shape of the whole bridge, calculated from the proposed seismic
response analysis of the interacting vehicle–bridge system. Compare Figures 8, 11, and 13 at, say, t D
6:2 s. The vertical displacement from the proposed approach is uBv = �0.39 mm (Figure 13(e)).
Similarly, the net vertical deflection due to seismic loading (Figure 11(e)) and due to the running
vehicles (Figure 8(e)), accounted for separately, is uBv = �0:47 C 0:06 D �0:41 mm. On the other
hand, the radial displacement from the proposed approach is uBr D 0:01 mm (Figure 13(f)), which is
lower than the net radial deflection uBr D 2:22� 3:08 mm D �0:86 mm from Figures 8(f) and 11(f).
This difference is attributed to the damping effect the vehicles have on the vibration of the bridge,
for example, [12]. This effect is more pronounced in the radial direction than in the vertical direction,
where the vibration of the bridge is more intense.

The favorable damping effect the moving vehicles have on the bridge is not a peculiar result of
the specific ground motion. For instance, Table I lists the characteristics of a suite of 20 sets of real-
ground motions. For all 20 ground motions, Figure 14 compares the ‘total’ amplitude of the bridge
vibration from (i) the proposed seismic analysis of the VBI system; (ii) the seismic analysis of the
bridge neglecting the mass and the dynamics of traffic; and (iii) the conventional seismic analysis of
the bridge including the mass due to traffic (0.3Qk;1). The ‘total’ amplitude is defined as the absolute
sum of the maximum positive and the maximum negative displacements of the midpoint of the bridge
(
ˇ̌
uBvmax

ˇ̌
C
ˇ̌
uBvmin

ˇ̌
and

ˇ̌
uBrmax

ˇ̌
C
ˇ̌
uBrmin

ˇ̌
, for example, Figure 12). For simplicity, it is assumed that the

earthquake strikes when the first vehicle enters the bridge. The conventional seismic analysis consis-
tently overestimates the response of the bridge, compared with the proposed seismic response analysis,
which explicitly simulates the dynamics of the vehicles. This is true, even if the mass due to live loads
is not accounted for. This observation verifies the previous conclusions of [2, 11, 12].

Under the same assumptions as Figure 14, Figure 15 summarizes the peak response of the first, the
fifth, and the 10th vehicles for the earthquake suite of Table I. The vehicle’s peak acceleration, in the
radial direction, is beyond the ‘comfort’ limits of current codes, for example, [32] for more than half
of the records examined. Note though that these limits do not refer to earthquake shaking conditions.
On the other hand, the derailment factor of the vehicle exceeds, or nears, the pertinent code safety
thresholds (e.g. [32]) for earthquake nos. 12, 15, 19, and 20 of Table I. The offload factor exceeds the
thresholds for earthquake no. 20. This is more alarming considering that these earthquakes are frequent
earthquakes (Mw 6 6). Further, Figure 15 reveals that near-fault ground motions (e.g. nos. 11 to 20 of
Table I) are more likely to be critical for the safety/stability of the running vehicles. Interestingly, this is
not always a factor of the acceleration amplitude. For instance, the peak offload and derailment factors

Copyright © 2016 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2016)
DOI: 10.1002/eqe



Q. ZENG AND E.G. DIMITRAKOPOULOS

Table I. Properties of the examined earthquakes.

Epic. Dist. X Y Z
number name Station Mag. (km) Dur. (s) PGA (g) PGA (g) PGA (g)

1 Coyote Lake CDMG 5.74 26.85 26.83 0.07 0.11 0.04
Station 1492

2 Livermore CDMG 5.42 31.54 30.00 0.11 0.05 0.01
Station 67070

3 San Francisco CDMG 5.28 27.03 25.50 0.10 0.11 0.05
Station 1117

4 Trinidad CDMG 5.7 71.24 21.45 0.17 0.13 0.03
Station 1498

5 Jiashi Xiker, 5.8 39.73 40.00 0.14 0.08 0.05
Northwest China

6 Chalfant Valley CDMG 54100 5.77 27.03 39.97 0.06 0.05 0.03

7 Matata, New Zealand Edgecumbe 5.7 45.76 29.50 0.04 0.04 0.04

substation

8 Yorba Linda La Harba & 4.27 16.63 43.00 0.03 0.04 0.01
Monte Vista

9 Northwest Calif-01 Ferndale 5.5 43.28 40.00 0.15 0.09 0.03
City Hall

10 Lytle Creek Cedar Springs 5.33 22.94 10.22 0.06 0.07 0.04
Pumphouse

11 Almiros-01, Greece Almiros 5.2 14.76 22.59 0.07 0.07 0.07

12 Hollister-04 CDMG 47189 5.45 11.35 80.00 0.04 0.09 0.05

13 Nakagawa HKD025 4.2 7.00 70.00 0.11 0.10 0.03

14 San Francisco Golden 5.28 11.02 39.72 0.09 0.10 0.03
Gate Park

15 Managua Nicaragua-02 Managua 5.2 4.33 48.00 0.26 0.22 0.18
ESSO

16 Oroville-04 Medical Center 4.37 10.50 12.52 0.08 0.05 0.03

17 Oroville-03 DWR Garage 4.7 6.03 13.60 0.11 0.22 0.09

18 Imperial Valley-07 Calexico 5.01 13.32 19.42 0.10 0.07 0.03
Fire Station

19 Almiros-02, Greece Almiros 5.2 13.25 22.60 0.07 0.07 0.09
20 Mammoth Lakes-10 Convict Creek 5.34 6.50 40.00 0.16 0.15 0.10

Data from [39, 40]
Mw, magnitude; epic. dis., epicentral distance; Dur, duration.

for records nos. 19 and 20 are comparable, even though the lateral peak ground accelerations (PGAs)
of record no. 19 are less than half those of no. 20, and as low as 0.07 g. Clearly, this is an important
issue that deserves further research; however, this is a task beyond the scope of the present paper.

Figure 16 shows the acceleration time histories of the car body of the first and the 10th vehicles,
for the earthquake of Figure 9. The strong earthquake shaking duration is from 0 to 5 s. Hence, for
a v D 120 km/h speed and a L D 207 m bridge length, the first and the 10th (last) vehicles are
running on the deck from 0 to 6.82 s and from 6.75 to 13.58 s, respectively (Figure 16). Recall that
the distinct vehicles are dynamically independent. Thus, the vibration of the two vehicles from t =
0 to t D 6:75 s differs only because of the response of the bridge, which ‘filters’ the base excitation
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Figure 14. The ‘total’ vibration amplitude of the midpoint of the bridge under different earthquakes: (a)
vertical and (b) radial directions. VBI, vehicle–bridge interaction.

Figure 15. The peak response of the first, the fifth, and the 10th vehicles under different earthquakes: (a
and b) the vertical and the radial accelerations of the car body, respectively, (c) the derail factor, and (d) the

offload factor.

the first vehicle experiences. The acceleration of the first vehicle running on the bridge (Figure 16(a)
and (c)) is amplified (in this case doubled) compared with that of the 10th vehicle, which is still
running on the ground (Figure 16(b) and (d)). By the time the 10th vehicle is running on the bridge,
the earthquake has decayed, and the vibration of the bridge resembles more free vibration (Figure 12).
Consequently, the amplification of the acceleration of the 10th vehicle, while still visible in the radial
direction between 6.75 and 13.58 s (Figure 16(d)), is lower than that (of the first vehicle) during the
strong ground shaking between 0 and 5 s. Figure 16(e) and (f) plots the pertinent normal contact force
�N

.2/ and lateral creep force �Ty
.2/ of the second (inner) wheel (Figure 6) of the first vehicle. For the

examined excitations, the seismic vibration of the bridge affects more the lateral creep force than the
normal contact force (Figure 16(e) and (f)). In summary, the seismic response of the bridge (examined)
has an adverse influence on the passing vehicles. The spectral amplification of the response of the
vehicle due to the excited bridge depends also on the position of the running vehicle on the deck during
the strong earthquake shaking. It is therefore an inherently ‘timing’ problem.
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Figure 16. The car-body acceleration time histories of (a and c) the first vehicle and (b and d) the 10th/last
vehicle induced by 10 identical vehicles and simultaneous earthquake excitation: (a and b) the vertical
direction; (c and d) the radial direction; (e and f) the normal contact force and the lateral creep force of the

second wheel of the first vehicle. VBI, vehicle–bridge interaction.

Figure 17. The peak response of three vehicles, considering different time instants the earthquake occurs:
(a and b) the vertical and the radial peak accelerations, respectively, (c) the peak derailment, and (d) the

offload factor. VBI, vehicle–bridge interaction.

The position of a running vehicle on a bridge shaken by earthquake excitation is unpredictable.
To shed light on the vehicle–bridge–earthquake ‘timing’ problem, Figure 17 examines 11 different
positions of the train on the deck when the earthquake commences. These 11 positions correspond
to the first vehicle being at either the midpoints of the five spans or over the six piers/abutments of
the bridge. The response analysis starts at t D 0 s when the first vehicle enters the bridge, but the
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earthquake excitation (of Figure 9) strikes when the first vehicle of the train reaches one of the 11
positions (the corresponding time is also shown in Figure 17). Figure 17 plots the peak values of the
critical metrics for the riding comfort and the safety of the vehicles. The continuous lines connect the
peaks of the three vehicles for the 11 positions to highlight the general trend. The response of the first
vehicles is higher when the earthquake strikes earlier (Figure 17), while the response of the succeeding
vehicles (fifth and 10th vehicles) is higher when the earthquake strikes later (Figure 17). In other words,
as a rule of thumb, the response of the vehicles amplifies, when the strong ground motion shaking finds
them running on the bridge. As an order of magnitude, the amplification of the acceleration of a vehicle,
due to the seismic response of the bridge, can reach values of 3 or higher, while the amplification of the
safety metrics (offload and derailment factors) is in the order of 2. In summary, the seismic response of
the bridge has a significant, adverse effect on the safety of the vehicle, and given the stochastic nature
of earthquakes, the problem beckons for a probabilistic treatment.

4. CONCLUSIONS

This study examines the seismic response of an interacting vehicle–bridge system under frequent
earthquakes. In view of the recent developments in railway transportation and the pertinent accidents
reported already, this is a problem of increasing importance. The proposed response analysis simulates
the 3D dynamics of the moving vehicles and uses a complete, 3D finite element model of the bridge.
The paper focuses on a horizontally curved railway bridge and train vehicles crossing the bridge during
different times periods of the ground motion excitation.

For the particular (vehicle–bridge) case studied, frequent earthquakes, of moderate amplitude, do
not pose a threat for the integrity of the bridge. The analysis even confirms that the running vehicles
might have a favorable damping effect on the vibration of the deck. However, the seismic response of
the bridge reduces the safety of the vehicles running on it compared with same vehicles running on
the ground during the same excitation. Even for a given vehicle–bridge case, the extent of this reduc-
tion is a complicated multi-parametric problem. It depends not only on, including but not limited to,
the intensity, the frequency, and the kinematic characteristics (e.g. near fault or far field) of the earth-
quake record but also on a vehicle–bridge–earthquake timing problem. More specifically, the particular
position of the running vehicles on the deck, when the earthquake occurs, affects significantly the
response/safety of the vehicle. The results show that under most of the moderate earthquakes examined,
the riding comfort of the vehicles exceeds, as expected, the pertinent contemporary code requirements.
More alarming finding though is that even frequent earthquakes, of moderate intensity, can threaten
the safety of the vehicles running on the bridge during the ground motion excitation. Finally, while the
present study offers a glimpse into the salient features of the vehicle–bridge–earthquake coupling, this
is an important but complicated problem, which deserves further research. Thus, the paper also pin-
points directions for future research related to the influence of the particular kinematic characteristics
of the seismic ground motion on the response of vehicle–bridge system as well as to a probabilistic
treatment of the vehicle–bridge–earthquake timing problem.
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