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Abstract: In this paper, the dynamic response of a pounding oscillator subjected to pulse type excitations is revisited with dimensional
analysis. The study adopts the concept of the energetic length scale which is a measure of the persistence of the distinguishable pulse of
strong ground motions and subsequently presents the dimensionless I products that govern the response of the pounding oscillator. The
introduction of Buckingham’s Il theorem reduces the number of variables that govern the response of the system from 7 to 5. The
proposed dimensionless II products are liberated from the response of an oscillator without impact and most importantly reveal remark-
able order in the response. It is shown that, regardless the acceleration level and duration of the pulse, all response spectra become
self-similar and, when expressed in the dimensionless Il products, follow a single master curve. This is true despite the realization of
contacts with increasing durations as the excitation level increases. All physically realizable contacts (impacts, continuous contacts, and
detachment) are captured via a linear complementarity approach. The proposed analysis stresses the appreciable differences in the
response due to the directivity of the excitation (toward or away the stationary wall) and confirms the existence of three spectral regions

where the response of the pounding oscillator amplifies, deamplifies, and equals the response of the oscillator without pounding.
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Introduction

A major challenge in studying the response of pounding structures
is no longer the dynamic response analysis of a specific configu-
ration but rather the presentation of the response analysis in a way
that is most meaningful for a wide class of structural configura-
tions. This challenge emerged partly because (1) of a wide variety
and a large number of parameters that govern the response of
pounding structures; (2) an ever increasing database of recorded
ground motions with quite complex patterns; and (3) several con-
flicting conclusions published in the literature.

Despite its apparent simplicity, the structural configuration of a
single-degree-of-freedom (SDOF) system pounding against a sta-
tionary monolithic wall, called pounding (or impact) oscillator,
presents a rich nonlinear dynamic behavior including subhar-
monic resonances and bifurcation branches which may lead to
chaotic behavior (Thompson and Stewart 2001). Analytical stud-
ies on the response of the impact oscillator have been presented
by Wolf and Skrikerud (1980); Shaw and Holmes (1983); and
Davis (1992) among others, focusing mainly on its steady-state
response under harmonic excitation. Wolf and Skrikerud unveiled
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on the subharmonic resonances that emerge due to repeated
poundings under harmonic excitation, while Shaw and Holmes
examined the same problem within the context of “dynamical
systems” and investigated the bifurcations in the behavior of the
impact oscillator. Davis identified spectral areas with periodic,
nonperiodic as well as chaotic contacts, while he elaborated on
the directivity of the pulse and the influence of the gap that was
normalized with respect to the peak ground displacement. Several
researchers have studied the response of two or more colliding
SDOF systems, as well as the response of adjacent buildings or
bridge segments due to earthquake shaking [e.g., see references
reported in DesRoches and Muthukumar (2002)].

This paper revisits the problem of pounding of a SDOF system
against a stationary monolithic wall due to earthquake shaking
with the aid of formal dimensional analysis (Langhaar 1951;
Sedov 1959; Barenblatt 1996). Its aim is to offer an alternative,
yet most natural, way to present the response of a pounding os-
cillator which is liberated from the response of the oscillator with-
out pounding and makes use of the fundamental concept of self-
similarity, a special type of symmetry which is invariant with
respect to size transformations. The application of the proposed
method hinges upon the existence of a distinct time scale and a
length scale that characterize the most energetic component of
ground shaking. Such time and length scales emerge naturally
from the distinguishable pulses which dominate a wide class of
strong earthquake records; they are directly related with the rise
time and slip velocity of faulting and can be formally extracted
with validated mathematical models available in the literature.

Mathematical Formulations on Impact and Contact

The behavior of a dynamical system with unilateral contact can
be expressed through the equation of Pfeiffer and Glocker (1996)
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M-q-h(t,q.q)-W-A=0 (1)

where M=mass matrix; W=direction vector of the constraint
contact force; A=Lagrange multiplier; q=generalized coordinates
vector; and h=vector of the nonimpulsive forces.

The basic assumptions of this method (Pfeiffer and Glocker
1996) are, in essence, those of rigid bodies, i.e., (1) impact is
assumed to be “very short,” yet separable into two phases, the
compression phase (begins at time instant 7, when contact is ini-
tiated and terminates at 7~ when the approaching process is com-
pleted) and the expansion phase (initiates at time 7. and
terminates at ¢, with the separation of the contacting bodies); (2)
during impact, all magnitudes of the system (position, orientation,
nonimpulsive forces) remain constant; (3) wave propagation ef-
fects generated by collision are neglected.

All physically feasible unilateral contact configurations (im-
pacts, continuous contacts, and detachments) are mathematically
treated as inequality problems, namely, linear complementarity
problems (LCPs) (Pfeiffer and Glocker 1996; Brogliato 1999). In
the classical form, a LCP is a system of linear equations: y=Ax
+b, with matrices A and b known, and y and x the unknown
vectors under determination, for which the following additional
complementarity conditions hold: y=0, x=0, y’x=0.

According to Leine et al. (2003), two similar LCPs are formu-
lated at the velocity level to capture the velocity jumps associated
with the two impact phases (compression and expansion) and one
additional LCP is formulated at the acceleration level for the
treatment of continuous contacts and detachment. In the follow-
ing, the aforementioned LCPs are presented in a simplified ver-
sion since in the present study, contact is assumed to be
frictionless and centric.

Continuous Contact and Detachment

Assuming the impenetrability constraint of the contact surface
holds, then the relative distance in the normal (to the contact
surface) direction of a contact, gy, must always satisfy the in-
equality constraint: gy=0. Every time the normal distance van-
ishes, gn(1)=0, contact takes place. With respect to the normal
direction of a contact, there are two types of contacts: the instan-
taneous (impacts) and the continuous (finite duration) contacts
which appear when additionally the relative velocity of the con-
tacting bodies, g,(#)=0, vanishes. This can be either due to totally
plastic impact, or successive inelastic impacts. A continuous con-
tact results in a contact force, N, which can be calculated as a
Lagrange multiplier that must satisfy the constraint: =0 due to
the unilateral character of a contact. Otherwise, if A <0 the con-
tact force lacks physical interpretation and therefore the time in-
stant when the contact force changes sign (from positive to
negative) is interpreted as the instant of detachment—separation
of bodies (end of a contact). This contact force, N, which is a
scalar quantity in the simple case examined herein, can be deter-
mined from a LCP formulated at the acceleration level as (Leine
et al. 2003)

En=WIMTTh+ WIMT'WN, gy=0, A=0, g&y-A=0
(2)

Impact-Compression Phase

At the end of the compression phase, the relative velocity, gyc,
and the impulse, Ay, in the normal direction of the contact form
a LCP which can be written as
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Fig. 1. Configuration of pounding oscillator subjected to ground
motions

Sne=WIM'"WAyc+8ya, nvc=0, Aye=0, gnc-Ayc=0
(3)

where subindex N stands for the normal direction of contact; sub-
indices C, E, and A stand for compression, expansion [see Eq.
(4)] phase, and the time instant contact begins, respectively; and
A stands for impulse of contact.

Impact-Expansion Phase

Similarly, the relative velocity at the end of the expansion phase,
8ne» forms a LCP with the impulse, Ayp=Ayg—eyAye, which
can be written as

Sve= (WM W)Ayp + WM™ WenAyc+ énes éne =0, Ayg
=0, gy Ane=0 (4)

The contact law used in the present study is that of Poisson’s,
according to which the coefficient of restitution, &y, is the im-
pulse ratio of the approach and expansion phases. It is reminded
that Newton’s coefficient of restitution is taken as the ratio of the
(relative) contact velocities after, gy, and before, gy,, impact:
gnpe=—€yn8na- However, for the particular case of the pounding
oscillator, which is a single-contact configuration, Poisson’s and
Newton’s laws for impact are equivalent (Pfeiffer and Glocker
1996).

Time Scales and Length Scales in Strong
Earthquake Records

One of the novelties of this work is that the response of the
pounding oscillator (Fig. 1) is normalized to a measure of the
persistence of the excitation—a length scale of the energetic com-
ponent of the ground shaking. During the last three decades an
ever increasing database of recorded ground motions has shown
that the kinematic characteristics of the ground motion near the
fault of major earthquakes contains distinguishable velocity and
displacement pulses. The relatively simple form, yet destructive
potential of near source ground motions, has motivated the devel-
opment of various closed-form expressions which approximate
their leading kinematic characteristics. The early work of Veletsos
et al. (1965) was followed by those of Hall et al. (1995); Heaton
et al. (1995); Makris (1997); Makris and Chang (2000); Alavi and
Krawinkler (2001); Mavroeidis and Papageorgiou (2003); and
Makris and Black (2004c). Some of the proposed pulses are
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Fig. 2. Earthquake records with distinguishable acceleration pulse

physically realizable motions with zero final ground velocity and
finite accelerations, whereas some other approximations violate
one or both the above requirements. Physically realizable trigo-
nometric pulses can adequately describe the impulsive character
of near-fault ground motions both qualitatively and quantitatively.
The input parameters of the model have an unambiguous physical
meaning. The minimum number of parameters is 2, which are
either their acceleration amplitude, «,, and duration, T), or the
velocity amplitude, v,, and duration, T,. Fig. 2 plots the time
histories of the Rinaldi station record, from the 1994 Northridge
earthquake, the Greek Organization of Telecommunications
record from the 1995 Aegion earthquake and the Bucharest record
of the 1977 Vrancea earthquake are also shown. In all three
records the pulse duration, T, and the pulse acceleration, Q,, are
shown. It is worth mentioning that the distinguishable pulse in the
Bucharest record is due to the presence of a deposit that filtered/
amplified an earthquake signal which was generated more than
160 km away.

The more sophisticated model of Mavroeidis and Papageor-
giou (2003) involves four parameters, which are the pulse period
and the pulse amplitude as well as the number and phase of half-
cycles, and was found to describe a large set of velocity pulses
generated due to forward directivity of strong ground motions.
The pulse period, T),, of the most energetic pulse is strongly cor-
related with the moment magnitude, M,,, of the event (Hall et al.
1995; Papageorgiou and Aki 1983; Mavroeidis and Papageorgiou
2003). Furthermore, seismological data indicate that the ampli-
tude of the velocity pulses recorded within a distance of 7 km
from the causative fault varies from 70 to 130 cm/s. This obser-
vation is in good agreement with the typical slip velocity of 100
cm/s frequently considered by seismologists (Brune 1970; Aki
1983).

The current established methodologies for estimating the pulse
characteristics of a wide class of records are of unique value since
the product apTi ~ L, is a characteristic length scale of the ground
excitation and is a measure of the persistence of the most ener-
getic pulse to generate inelastic deformations, in the case of yield-
ing oscillators (Makris and Black 2004a,b; Makris and
Psychogios 2006). The reader should recall that among two pulses
with different acceleration amplitude (say o, >«,,,) and different
pulse duration (say 7)< sz), the deformation demands (and
eventually impacts and finite duration contacts) do not scale with
the peak pulse acceleration (most intense pulse) but with the
stronger length scale (larger apTi gives the most persistent pulse).

Elastic SDOF Oscillator with Unilateral Contact
Subjected to Base Excitation

In the particular case of a single degree of freedom elastic oscil-
lator, the equation of motion taking into account contact phenom-
ena can be written as

(1) + 280w - u(t) + wp - u(t) = (1/m) - W N(1) == di (1) (5)

where m, &;, and wy=scalar properties of mass, damping ratio,
and angular frequency of the oscillator examined; u denotes its
horizontal, relative to the ground, displacement; and ug=gr0und
displacement. As aforementioned, in the particular case examined
herein: W=-1.

Contact kinematics for the mechanical configuration of Fig. 1
is described via the simple equation

en(t) =3 —u() (6)

where §=initial gap or “standoff” distance between the oscillator
and the wall. Each time a contact event is detected the pertinent
LCPs are solved. For the case of continuous contacts and detach-
ment Eq. (2) takes the form

gn=(L/m)\ = [= 280t — wgu = iiy(1)],
§v=0, A=0, &y A=0 (7
Furthermore for the two phases of impact the two LCPs, Egs. (3)
and (4), specify to

gnc= ;ANC'F gvas Ene=0, Ane=0, gneAyc=0

(8)

and
ne=—Aynp+ —exAyc+ Enc
m m

gve=0, Anp=0, gyp-Aypg=0 9)

respectively.

Implementation of Dimensional Analysis

From Egs. (5)—(9), it becomes evident that the mass of the oscil-
lator, m, can be eliminated from the equations describing the dy-
namics of the system. This observation is consistent with the
implicit assumption of a rigid stationary wall, which presupposes
a very large—‘“infinite”—mass. Indeed, it is intuitively clear that
if the mass of the boundary is infinite, then the size of the oscil-
lator’s mass drops out of consideration.
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Hence, six parameters are required to determine each response
quantity of the pounding oscillator (maximum response displace-
ment, u,,,, velocity, or acceleration): these are the angular fre-
quency, gy, and the damping ratio, &, of the oscillator, the
coefficient of restitution, ey, and the size of the gap, o, and the
two parameters which describe the predominant pulse, the accel-
eration “a,” and the angular frequency of the pulse, w,=2m/T,
(see Figs. 1 and 2). Accordingly

Unmax =f((‘00’§0’8’8N7ap7('0p) (10)

The seven variables appearing in Eq. (10) involve only two ref-
erence dimensions, that of length [L] and time [7]. According
to Buckingham’s “II” theorem the number of independent di-
mensionless II products is now (7 variables)—(2 reference
dimensions)=5 II terms.

When applying the theory of dimensional analysis, there is no
restriction in the choice of repeating variables as long as the re-
peating variables are dimensionally independent (that means that
the product of repeating variables cannot be dimensionless).
Herein, as in the case of yielding oscillators (Makris and Black
2004a,b; Makris and Psychogios 2006) we select as repeating
variables the characteristics of the pulse excitation, «, and ),
=2’IT/T[,, since we seek to normalize the nonlinear response in-
cluding contact, to the energetic length scale of the excitation,
L,~a,/w>=(1/4m)a,T,. Accordingly, Eq. (10) reduces to

2 2
Uy O W, oW
Zmax"p _ (_0!_2,81\”&0) (11)
ap @, dp
or
Hl = ¢(H2’H3’H47H5) (12)
with
U O dw?
H1=_2, I, =—, H3=_2, =gy, lls=§
ap ®p ap

(13)

The new terms proposed in this paper to characterize structural
response of the pounding oscillator are the dimensionless prod-
ucts l_[3=8(;o[2,/a[7 and II,=ey. The product II, is an obvious
choice since it is an already dimensionless parameter with unique
significance in impact.

The dimensionless 1'[3=8u)[2,/a,, product, though, is a novel
proposition which suggests that the size of the gap “8” can be
scaled to the energetic length scale of the excitation (a,,/ mi[m])
rather than scaled to the relative displacement of the adjacent
structures when contact of the adjacent structures does not occur
(X=8/txo pounding)- The new dimensionless 115 product, instead of
normalizing the size of the gap with respect to the response with-
out contact (as is done with the “x” parameter), which uses infor-
mation from a different problem that requires additional
calculations, normalizes the gap (capacity) with a distinct charac-
teristic of the excitation (demand). Thus the description of more
involved and realistic systems (multiple adjacent structures) is
simplified since 115 depends on fewer arguments and, being inde-
pendent of the dynamical characteristics of the oscillators, can be
estimated a priori.

The dimensionless product, IT,=w,/,, is the frequency ratio
on which DesRoches and Muthukumar (2002) recently drew at-
tention and identified it as a primary pounding parameter. In sum-
mary, the response (displacement) of an elastic oscillator with
unilateral contact is fully described by Eq. (12) and the associated
dimensionless products given by Eq. (13).
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lllustrative Example

To illustrate the underlying mechanism that is based on the per-
sistency of the pulse and the significance of adopting the pro-
posed dimensionless Il terms when examining the pounding
oscillator, Fig. 3 plots the response of two different oscillators
with different gap distances; when subjected to one-cosine accel-
eration pulses of different amplitudes, the dimensionless IT prod-
ucts in the two structural systems are the same. What is
interesting in Fig. 3 is that the duration of finite contact of the stiff
oscillator (T)=0.5 s, &=5%) is significantly smaller than the
duration of finite contact of the more flexible oscillator (7
=15 s, £=5%). Nevertheless, when the response histories of
the two oscillators are plotted in dimensionless terms, the two
response histories collapse to a single “master” time history. The
dimensional analysis presented herein shows clearly that what
affects the response is not the size of the gap, 8, but the ratio of
the gap to the energetic length scale of the pulse in H3=8mi/ a,.

The main advantage of the dimensional analysis presented in
this paper is that it brings forward the concept of self-
similarity—an invariance with respect to changes in scale or
size—which is a decisive symmetry that shapes nonlinear behav-
ior. Thus, the response curves, in the proposed dimensionless TI
products, for different levels of excitation and a given value of the
dimensionless gap (H3=8w12,/ a,) collapse to a single master re-
sponse history and therefore to single master response spectra
(self-similarity). This remarkable property of the dynamic behav-
ior of a pounding oscillator is illustrated in Fig. 4, where the left
column plots response spectra in dimensional displacement terms
(centimeters) for three different excitation levels and two values
of the dimensionless gap, Il;, and the right column plots the
corresponding spectra in the dimensionless II terms. Note that
pertinent conclusions are drawn for excitations without distinct
pulse, provided that the appropriate time and length scales are
adopted (Dimitrakopoulos et al. 2009a).

Fig. 5 (top) and Fig. 6 (top) plot self-similar response spectra
of the pounding oscillator for different values of dimensionless
gap H3=8w12)/ap and all intensity levels when subjected to a one-
sine acceleration pulse (Fig. 5) and a one-cosine acceleration
pulse (Fig. 6) that pushes the stationary wall toward (left) and
away (right) from the oscillator. For comparison, a more tradi-
tional way to interpret the behavior of the pounding oscillator, via
the gap ratio parameter “X=08/u,, conact» 1-€-, the ratio between
the gap and the maximum relative displacement of the adjacent
structures, if pounding does not occur (e.g., DesRoches and
Muthukumar 2002), and the pounding amplification factor “y,”
i.e., the maximum response displacement with pounding divided
by the corresponding displacement without pounding, is offered
in Figs. 5 and 6. For the case of a single pounding oscillator, it
turns out that the y curves shown at the bottom of Figs. 5 and 6
are also self-similar. Nevertheless, when three or more adjacent
oscillators are of interest (e.g., Dimitrakopoulos et al. 2009b),
multiple x values emerge and the presentation of the response
according to the more traditional way becomes much less direct
than the presentation with the dimensionless II products.

Effect of the Gap Size on the Response

An interesting feature of Figs. 5 and 6 is that the response differs
substantially, for small I1,=0,/w,, values depending on the direc-
tivity of the pulse, meaning whether the pulse pushes the station-
ary wall toward, or away from, the oscillator. Clearly, in this
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dimensionless products.

spectral region (of small IT, values) the directivity effect governs
the response of the system—a characteristic that underlines the
asymmetry and the geometrical (boundary) nonlinearity of the
problem. This characteristic has received marginal attention with
probably the exception of the work of Davis (1992) who sug-
gested that response alters depending on the excitation’s directiv-
ity, even when steady-state response is concerned (wherein such

transient characteristics wear off). In the following, when the
pulse is pushing the wall toward the oscillator, it is considered as
normal pulse; whereas when it is moving the wall away from the
oscillator, it is considered as a reverse pulse.

According to Figs. 5 and 6 the response is more sensitive to
the dimensionless gap value, I15, if the directivity of the pulse is
reverse rather than normal (Figs. 5 and 6). Special attention de-
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products.

serves the intense amplification of the response displacement for
small frequency ratios (I1,=w,/ wp) when the pulse is of normal
directivity. This peculiar characteristic of the response, which ap-
pears mainly for normal directivity, is explained in the next sec-
tion, where different response patterns of the pounding oscillator
are correlated with distinct spectral regions. It should be noted
that generalizing conclusions for the spectral region of very small
I, =wy/w, is precarious since as Il,—0 (in practice for I,
=0.1) the system is unstable and small perturbations yield unpre-
dictable results.

Regarding the size of the dimensionless gap, Il;, the most
important observation is that the response spectra assume nearly
identical values for I1;=0.1, which suggests that the response is
insensitive to small values of the dimensionless H3=6w12,/ap gap.
In fact, the dimensionless response displacement, 11, converges
to a finite nonzero limit as II; tends to zero; according to the
theory of dimensional analysis, one can simply replace Eqgs. (11)
or Eq. (12) by its limiting expression in which T1;=0 [4]

2
Uppax®
Ay _ (@,o,eN,go) (14)
a, w,

Accordingly, with this limiting operation the number of argu-
ments in the function ¢( ) appearing in Eq. (12) reduces further
by one argument; it follows that the number of analyses in a
parametric study reduces exponentially (Sedov 1959; Barenblatt
1996). Consequently, for small values of & (II;=0.1), Eq. (14)
reduces to
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2
umaxw) (‘0
—map =¢(—°,8N,go) (15)
)

The existence of a finite nonzero limit for I, as II; tends to zero
indicates that the normalized relative displacement of a pounding
oscillator, I1;, exhibits a complete similarity, or similarity of the
first kind (Barenblatt 1996) in the size of the gap, 3, when 3 is
sufficiently small. Fig. 7 plots contours of H3=8m§/ap on the
dimensional (gap 8)—length scale (1/L,) plane. The energetic
length scale, L,, of the real records shown in Fig. 7 has been
based on the acceleration amplitudes, a,, and angular frequencies,
o, reported in Mavroeidis and Papageorgiou (2003). The shaded
area under the contour II;=0.1 corresponds to the area where
complete similarity prevails. For instance, if =1 cm, the re-
sponse is indifferent whether the oscillator is subjected to the
1978 Tabas earthquake (1/L,=1.2 m™') or the 1966 Parkfield
(C02) earthquake (1/L,=5.3 m™'). Note that typical values for
hinge gaps in bridge spans range from 0.6 to 1.3 cm (DesRoches
and Muthukumar 2002).

The qualitative characteristics of the pounding oscillator’s re-
sponse can be summarized as follows: regardless whether com-
plete similarity prevails, for small dimensionless gaps (I1;—0),
the response is governed by the successive impacts and is also
virtually indifferent to the shape of the pulse, i.e., whether the
oscillator is subjected to, e.g., the Tabas or Parkfield earthquakes.
This happens since the more flexible the oscillator is, the higher
impulse it gains from impact and consequently the longer its re-
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Fig. 5. Self-similar response spectra for the SDOF pounding oscillator excited with a sine pulse, in the proposed dimensionless II terms (first

row) and in the more common terms of amplification factor (second row)

sponse displacement becomes. On the other hand, as the dimen-
sionless gap, Il;, increases, the structure gains more space to
oscillate; thus its “effective” period successively lengthens and
the response tends more to the response without contact.

Role of wy/w, Ratio

Three distinct spectral regions of Il, (=wy/w,=T,/T;) can be

recognized in the response of the single pounding oscillator, re-

garding the role of unilateral contact on the maximum response

displacement (Fig. 8).

1. The first region, for spectral frequencies I,=w,/w,<0.5,
wherein the response of the pounding oscillator amplifies due
to contact. Additionally, in this region of flexible structures,
the directivity of the pulse is of increased importance (Fig.
8). In particular, for both small dimensionless gaps, e.g.,
H3:8m;/ a,<0.1, and very small dimensionless spectral fre-
quencies, Il,=wy/0,<0.1, the response tends to infinity if
the pulse is normal directed (Figs. 5 and 6);

2. In the intermediate region, for 0.5=<Il,=wy/w,=2.0, con-
tact systematically deamplifies the maximum response dis-
placement. As the dimensionless 115 gap increases, this area
shortens, but systematically the highest decrease is observed
in the neighborhood of the resonant frequency, Il,=0,/w,
~1. It is in this limited region that pounding hinders the
amplification of the response due to resonance (Priestley

et al. 1996) and not throughout the response spectrum as it is
often perceived; and

3. In the third region, for IT,>2 contact has no significant ef-
fect on the response. The oscillator is relatively rigid and
either its maximum response displacement is smaller than the
gap size (I1,<Il;, no contact), or contact occurs but with
impact velocities which are too small to alter the response
(e.g., the maximum response displacement).

The transition values of II, from one spectral region to the
other are a function of the dimensionless H3=8w[2,/ a, gap size,
and as Il increases these areas of different behavior converge to
the no contact behavior curve. It is interesting that the three spec-
tral regions identified in this work are reminiscent to the spectral
regions of the (free standing) elastic oscillator in earthquake en-
gineering (Newmark and Rosenblueth 1971).

The intense amplification of the response for very small II,
values (IT,<<0.1) and its sensitivity to the directivity of the pulse
in the same spectral region can be qualitatively explained, con-
sidering the limit case of a very flexible oscillator (7— ). When
such a system is subjected to a ground motion, its relative to the
ground response displacement equals the ground displacement (fi-
nite). Yet, if a stationary wall firmly connected to the ground
moves toward the still body (normal directivity), an impact takes
places and impulse is transferred to flexible oscillator. At the lim-
iting case of T—o (K=0) the initial velocity leads to endless
motion of constant velocity (infinite response displacement). On
the contrary, if the stationary wall moves away from the body
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(reverse pulse), contact between the boundary and the oscillator
does not occur and hence the oscillator remains still. The response
of a more realistic long-period structure tends to this limit behav-
ior as its period lengthens. Fig. 9 illustrates the response of such
a flexible structure (T,=3.0 s) for different directed pulses.

Effect of the Coefficient of Restitution on the
Response

The coefficient of restitution, ey, represents the I, term of the
functional relationship that governs the maximum response dis-
placement of the pounding oscillator [Eq. (13)] and expresses the
inelasticity of impact, with ey=1 corresponding to a perfectly
elastic impact and €y=0 to a perfectly plastic impact. Its influence
on the response of the pounding oscillator is schematically pre-
sented in Fig. 10 for the whole range of its values: (gy € [0,1]).

It has been stated in the literature (Ruangrassamee and Ka-
washima 2001) that considering a coefficient of restitution equal
to 1, ey=1, yields results on the safe side in comparison with
smaller coefficients of restitution since during perfectly elastic
impacts (gy=1) no loss of energy takes place. Nevertheless, the
mechanical system of the pounding oscillator is highly nonlinear
and the aforementioned argument is false as illustrated in Fig. 10.

This “counterintuitive” behavior is observed for sine pulses of
normal directivity, as well as cosine pulses of reverse directivity.
It is recalled that cosine acceleration pulses are forward-and-back
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displacement movements and thus can be looked upon as a half-
cycle reverse and a half-cycle normal directed pulses. Fig. 11
plots two time histories, each for a different coefficient of resti-
tution: gy=0.2 for the response in the left column and &y=1.0 for
the one in the right column, but both for II,=wy/w,=1.16 and a
one-cosine excitation pulse of reverse directivity.
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It is observed that the higher response displacement results
from the smaller coefficient of restitution, gy=0.2 (Fig. 11, left).
The examination of the velocity plots, second row of Fig. 11,
provides the justification for this counterintuitive behavior, which
is the smaller coefficient of restitution results in higher energy
loss and hence a greater deceleration of the oscillator after impact.
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As a further consequence, when the ground excitation changes
sign (reverses), the oscillator is accelerated more drastically, thus
exhibiting longer response displacements. Similar counterintui-
tive responses which are also due to the accelerating and decel-
erating sequents of the pulses have been identified by Makris and
Roussos (2000) when studying the rocking response of rigid
structures.

Steady-State Response under Harmonic Excitation

Lastly, the steady-state response under harmonic excitation is also
revisited herein since, on one hand, it provides useful insight into
the dynamic behavior of the pounding oscillator and, on the other
hand, it serves as a connecting link between our work and that of
previous researchers. It is reminded that herein a nonsmooth ap-
proach is adapted to model contact, while in the studies refer-
enced (Wolf and Skrikerud 1980; Shaw and Holmes 1983; Davis
1992; Thompson and Stewart 2001) impact is simulated via a
contact element approach.

Fig. 12 plots the maximum response displacement, dimension-
less II; term, under harmonic excitation for zero gap conditions,
I1,=0.001, and given values of the coefficient of restitution. As it
is well known, due to the repeated poundings, the natural fre-
quency of the oscillator is not damped out entirely as the excita-
tion insists (elastic—no contact response), but it results in
periodic responses with lower frequencies than the natural one,
called subharmonics (Thompson and Stewart 2001). These sub-
harmonic resonances accentuate the response for integer values of
the natural frequency (e.g., the corresponding peaks for 1/11,
~2,4,6,8) as marked also by Wolf and Skrikerud (1980) and
Thompson and Stewart (2001). Between successive subharmonic
resonances, there exist regions of chaotic response in accordance
with Davis (1992).

The most important observation, from the standpoint of earth-
quake engineering though, is the little resemblance the steady-
state response for harmonic excitation (Fig. 12) bears with the
transient response for typical pulses (Fig. 5, 6, and 10) which are
a more realistic approximation of an earthquake excitation.

Conclusions

In this paper the response of a SDOF oscillator pounding against
a stationary monolithic wall is revisited using the theory of di-
mensional analysis. The application of the proposed method
hinges upon the existence of a distinct time scale and a length
scale that characterize the most energetic component of ground
shaking. Such time and length scales emerge naturally from the
distinguishable pulses which dominate a broad class of strong
earthquake records; they are directly related with the rise time and
slip velocity of faulting and can be formally extracted with vali-
dated mathematical models published in the literature.

The proposed dimensionless II products reduce the number of
variables in this problem by 2 and are liberated from the need to
calculate the response of the SDOF oscillator without pounding.
The proposed dimensional analysis unveils the symmetry of self-
similarity and when the response is presented in terms of the
dimensionless 11 products, all response curves collapse to a single
master curve. This remarkable behavior is true despite the real-
ization of contacts with increasing durations as the excitation
level increases.

The dimensional analysis presented in this work shows that
what really matters during the phenomenon of pounding is not the
size of the gap, 3, alone but its normalized value, with respect to
the energetic length scale of the excitation L,=a,/ m,%. Further-
more, when the value of the dimensionless gap, H3:8m§/ a,, is
small (say II;<<0.1), the normalized displacement, II,
=umaxm§/ @, is merely independent of II; or in mathematical
terms the dimensionless displacement II; exhibits a complete
similarity, or similarity of the first kind in the normalized gap, I1;.

The condensation of the parametric analysis that was made
possible from the dimensional analysis sheds light on the sensi-
tivity of the response depending whether the stationary wall is
moving toward or away from the oscillator; it was shown that
when TI,=wy/®, is small, the response is most sensitive to the
directivity of the pulse.

Our analysis concludes that the response of the pounding os-
cillator is characterized by three main spectral areas: (1) the area
of small Il,=w,/w, (say Il,<<0.5—flexible structures or short
pulses) where the response of the pounding oscillator amplifies
and far exceeds the response of the oscillator without pounding;
(2) the area of intermediate values of II, (say
0.5=w,/w,=2—"resonance”) in which the response of the
pounding oscillator deamplifies and is smaller than the response
of the oscillator without pounding; and (3) the area of large II,
=wy/w, (say I1,>2; stiff structures or long duration pulses) in
which pounding is immaterial.

Finally the study depicts counterintuitive trends in the re-
sponse of the pounding oscillator, wherein smaller coefficients of
restitution yield higher maximum response displacements. These
counterintuitive trends are shown to arise from the accelerating
and decelerating sequents of the excitation pulses.
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