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Abstract Skew bridges with in-deck joints belong to
the most common types of existing bridges world-
wide. Empirical evidence from past earthquakes indi-
cates that such, multi-segment, skew bridges often ro-
tate in the horizontal plane, increasing the chances of
deck unseating. The present paper studies the oblique
in-deck impact between successive bridge segments,
which triggers this peculiar rotation mechanism. The
analysis employs a nonsmooth rigid body approach
and utilizes set-valued force laws. A key feature of this
approach is the linear complementarity problem (LCP)
which encapsulates all physically feasible post-impact
states. The LCP results in pertinent closed-form so-
lutions which capture each of these states, and clari-
fies the conditions under which each post-impact state
appears. In this context, a rational method to avoid
the singularities arising from dependent constraints is
coined. The results confirm theoretically the observed
tendency of skew (bridge deck) segments to bind in
their obtuse corners and rotate in such a way that the
skew angle increases. Further, the study offers equa-
tions which describe the contact kinematics between
two adjacent skew planar rigid bodies. The same equa-
tions can be used to treat successively as many pairs of
skew bridge-segments as necessary.

E.G. Dimitrakopoulos (B)
Department of Civil and Environmental Engineering,
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1 Introduction

The present paper focuses on the earthquake-induced
impact between adjacent skew bridge deck segments.
It extends previous work of the author, which con-
cerned skew bridges with solely deck-abutment ex-
pansion joints, to the case of skew bridges with in-
deck joints. On the same time, this paper derives from
a broader study [1–3] on the problem of earthquake-
induced pounding in bridges.

The peculiar seismic response of skew bridges has
been reported systematically after the 1971 San Fer-
nando earthquake [4–6], and continues to attract the at-
tention of researchers ever since (e.g. [7–11] and refer-
ences therein). During earthquake excitation, adjacent
skew deck-segments often bind in one of the obtuse
corners and rotate, in the horizontal plane, in the di-
rection of increasing the skew angle [12, 13] (Fig. 1).
This coupling of the longitudinal and the transverse
response, is primarily triggered by oblique impact at
the expansion joints and increases the tendency of the
deck to drop off the supports [12, 14]. Two cases are
distinguished from a kinematical point of view: (a) the
“deck-abutment” contact (examined in [1]) and (b) the
more complicated, “in-deck” contact between adjacent
skew bridge segments (Fig. 1), which is the focus of
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Fig. 1 Damage of a skew bridge after the Tehuacan 1999 Mex-
ico earthquake (adapted from [25])

the present paper. The latter might occur during the
seismic response of bridges with in-deck joints (multi-
segment deck).

Despite the dominant role of pounding on the seis-
mic response of straight (see [15–17] and references
therein) and particularly of skew bridges, there is
a lack of experimental results and/or field measure-
ments that would shed light on the pounding-induced
rotations. Instead, most studies rely on a numerical
simulation of the associated contact/impact, adopting
the contact element (or “compliance”) approach. The
deck-abutment impact has been modelled with a single
unilateral spring activated only in compression (“gap”
element) [18, 19], and more recently, with multiple
distributed gap elements aligned perpendicularly to
the contact surface [7, 20, 21]. For the same type of
impact, Maleki [22] used a gap element at the acute
corner and a “hook” element (a unilateral spring work-
ing only in tension) at the obtuse corner of the deck.
Similarly, the in-deck contact/impact is simulated with
either single gap elements at the corners of the indi-
vidual deck segments [23, 24] or with distributed gap
elements along the contact surface, as in the detailed
study of Huo and Zhang [14].

Nonsmooth dynamics [26–30] offers an alterna-
tive simulation approach of the earthquake-induced
pounding in bridges. Within this context, contact and
impact are treated as inequality problems, for instance
linear complementarity problems (LCP) and impact
laws often assume a set-valued form [1, 27, 31, 32].
The author proposed such a framework for the earth-
quake-induced pounding in straight [2, 16] and in
skew bridges with solely deck-abutment joints [1, 33].

The work reported herein extends the previous
work of the author [1] as: (a) it deals with the general,
from a kinematical point of view, case of pounding in
skew bridges, (b) it proposes a rational way to avoid
singularities (singular matrices) caused by dependent
constraints, and (c) offers original closed-form solu-
tions for the in-deck impact of skew bridges. The mo-
tivation for this study originates from: (i) the need
to elucidate the oblique impact phenomenon in skew
bridges with in-deck joints, (ii) the importance of this
rotation mechanism manifested by empirical evidence,
and (iii) the large number of existing skew bridges,
which, in many seismic regions worldwide, represent
the majority of the bridge stock [17].

2 Proposed nonsmooth dynamics approach

This study considers the individual bridge deck seg-
ments (in-between two successive separation/expans-
ion joints) as rigid bodies moving on the horizontal
plane. The study further assumes that the interac-
tion between adjacent segments is a unilateral contact
and adopts the simplest impact laws, in a set-valued
form [1, 27, 32], to describe this interaction.

In particular, a set-valued map, the unilateral prim-
itive Upr (e.g. Fig. 2, right) and Newton’s coefficient
of restitution εN ∈ [0,1] describe the behavior in the
normal direction of contact i:

−ΛNi ∈ Upr(vNi) (1)

where vNi
.= γ +

Ni + εNγ −
Ni is the associated velocity

jump in the normal direction, γNi is the relative ve-
locity in the normal direction of impact and ΛNi is the
associated impulse. Throughout this paper, superscript
“+” refers to the post-impact state and superscript “−”
to the pre-impact state.

A different set-valued map, the Sgn(x) function,
enforces Coulomb’s friction law in the tangential di-
rection of contact i:

−ΛT i ∈ μiΛNi Sgn
(
γ +
T i

)
(2)

where μ is the coefficient of friction and ΛT i the tan-
gential impulse. The Sgn(x) function differs from the
standard sgn function at the point x = 0, where the for-
mer yields a set of values: Sgn(x = 0) = [−1,1], in-
stead of a single value sgn(x = 0) = 0. Key role in this
approach holds the decomposition (3) (Fig. 2), which
restores the complementarity conditions in the tangen-
tial direction of impact:
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Fig. 2 Set-valued friction force law [31]

⎧
⎪⎪⎨

⎪⎪⎩

−ΛT Ri ∈ Upr(vT Ri) ΛT Ri = μΛNi + ΛT i

−ΛT Li ∈ Upr(vT Li) ΛT Li = μΛNi − ΛT i

γ +
T i = vT Ri − vT Li

(3)

In which vT R and vT L are the right and left velocity-
parts (Fig. 2) of the post-impact tangential velocity:
γ +
T i = vT Ri − vT Li and ΛT R and ΛT L are the corre-

sponding impulses.
In integrated form the Newton–Euler equations are

M
(
u+ − u−) = WNΛN + WT ΛT (4)

where M is the mass matrix and W are the direc-
tion matrices of the impulse vectors Λ in the normal
WN = {wNi} and the tangential direction WT (40), re-
spectively; sub-indices N , T are used throughout this
paper in the same sense. For the generalized velocities
u and the generalized coordinates q, q̇ = u holds in an
“almost everywhere” sense of functional analysis [31].

The relative (contact) velocities in the normal
γNi = wT

Niu and the tangential γT i = wT
T iu direc-

tion appear by pre-multiplying (4) with WT
N M−1 and

WT
T M−1:

γ +
N − γ −

N = GNNΛN + GNT ΛT

γ +
T − γ −

T = GT NΛN + GT T ΛT

(5)

where the “G” matrices are

GNN = WT
N M−1WN GNT = WT

N M−1WT

GT N = WT
T M−1WN GT T = WT

T M−1WT

(6)

Following the procedure outlined in [1] the problem
of the frictional multi-impact is formulated as a linear
complementarity problem (LCP):
⎛

⎝
vN

vT R

ΛT L

⎞

⎠ =
⎛

⎝
GNN − GNT

¯̄μ GNT 0
GT N − GT T

¯̄μ GT T 1
2 ¯̄μ −1 0

⎞

⎠

⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠

+
⎛

⎝
( ¯̄εN + E)γ −

N

γ −
T

0

⎞

⎠ (7)

⎛

⎝
vN

vT R

ΛT L

⎞

⎠ ≥ 0,

⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠ ≥ 0

⎛

⎝
vN

vT R

ΛT L

⎞

⎠

T ⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠ = 0

(8)

where: ΛN = {ΛNi}, ¯̄εN = diag{εNi}, i is the index of
the impact points and E is the identity matrix. ΛT is
defined later in Sect. 4.2 as a scalar, GNT , GT N , and
GT T are defined according to (41) and ¯̄μ = (μ μ) is a
vector containing the coefficients of friction. We have

ΛT L = ¯̄μΛN − ΛT = 2 ¯̄μΛN − ΛT R (9)

Equations (7) together with the inequalities (8) rep-
resent an LCP in the classical form; i.e. a system of
linear equations: y = Ax + b, with matrices A and b
known, and y and x the unknown vectors under de-
termination, for which the following additional com-
plementarity conditions hold: y ≥ 0, x ≥ 0, yT x = 0.
The LCP (7), (8) encapsulates a great variety of impact
states such as “slip”, “stick”, reversal of sign and non-
impulsive behavior both for single-impact and double-
impact (see Sect. 4). The proposed LCP formulation
(7), (8) is also readily applicable for the dynamic anal-
ysis of pounding skew bridge models, for instance, by
means of an event-based methodology as in [33].

3 Contact kinematics between two planar skew
rigid bodies

In addition to the inherent difficulties and uncertainties
of contact phenomena in straight bridges, skew bridges
present several distinct kinematical challenges as con-
tact/impact takes place in multiple, non-predefined
points, is non-centric and oblique. This section de-
scribes the contact kinematics between two adjacent
skew bridge-segments. It offers equations which can
be used to treat successively as many pairs of (ad-
jacent) skew segments as necessary. As illustrated
later, the same equations cover also the case of deck-
abutment impact [1].

Consider two adjacent skew bridge-deck segments
in plan, with skew angle α, width W , lengths L1

and L2, respectively, and (at rest) horizontal distance
between them δ (Fig. 3). For the purposes of this
analysis, each deck segment is a planar rigid body
j (j = 1,2) with degrees of freedom the two hor-
izontal translations (xj , yj ) and the planar rotation

Author's personal copy
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Fig. 3 Contact kinematics
of two adjacent skew bridge
segments for planar motion

(θj ), all referring to an inertial frame of reference.
The generalized coordinates vector of the problem is:
qT = [x1 y1 θ1 x2 y2 θ2 ].

Points along the contours of the two bodies are
determined with the help of parameters σj (Fig. 3).
A point of contact lies between the two edges of the
contour, when

−(W tanα)/2 ≤ σj ≤ (W tanα)/2, j = 1,2 (10)

Hence, the position vector of a point along the contour
(of the body) j = 1, 2 is:

rPΣj = (−1)j+1

⎛

⎝
(c θj − s θj cotα)σj + c θjLj/2
(s θj + c θj cotα)σj + s θjLj/2

0

⎞

⎠

j = 1,2 (11)

where the abbreviations: cos θj
.= c θj and sin θj

.=
s θj are used in the same way throughout this paper;
e.g. cα = cosα and sα = sinα.

The differentiation of the position vector rPΣj with
respect to σj , returns the normal n and the tangential t
direction vectors of the two contours [29] (Fig. 3):

ti = (−1)j+1

⎛

⎝
sin(α − θj )

cos(α − θj )

0

⎞

⎠ , nj = (−1)j

⎛

⎝
cos(α − θj )

− sin(α − θj )

0

⎞

⎠ , j = 1,2 (12)

The distance vector rD , as a function of parameters σj (e.g. Fig. 4) is

rD =
⎛

⎝
(1 − c θ2)L2/2 + (1 − c θ1)L1/2 + δ + x2 − x1 − (c θ2 − s θ2 cotα)σ2 − (c θ1 − s θ1 cotα)σ1

− s θ2L2/2 − s θ1L1/2 + y2 − y1 − (s θ2 + c θ2 cotα)σ2 − (s θ1 + c θ1 cotα)σ1

0

⎞

⎠ (13)

3.1 Relative distance in the normal direction of
contact

Contact between two adjacent skew bridge deck-
segments can take place either at an edge, single-point
contact (Fig. 4), or along a side—full edge (multi-
point contact (Fig. 5). Single-point contact appears be-
tween any of the two edges of one body/contour and at
an unknown contour point of the adjacent body. Two
cases are distinguished (Fig. 4):

Case 1: One of the two edges of contour 2 comes in
contact with an unknown point of contour 1 (Fig. 4
top). The condition rT

Dt1 = 0 (14):

rT
Dt1 = 0 ⇒

σ1

sα
= − sαL1/2 + [

(1 − c θ2)L2/2 + L1/2 + δ

+ x2 − x1
]

sin(α − θ1) + (− s θ2L2/2

+ y2 − y1) cos(α − θ1)

− cos(θ1 − θ2)
σ2

sα
(14)
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Fig. 4 Point contact
between two planar skew
rigid bodies. Case 1
(gN = −rT

Dn1) (top),
Case 2 (gN = rT

Dn2)

(bottom)

Fig. 5 Full-edge
frictionless impact between
two skew deck segments
(considered as rigid bodies)

determines the point of contact on contour 1 (param-
eter σ1) which, in addition, has to satisfy the con-
straint (10).

The inner product of the distance vector rD with
the orthonormal vector n1 (Fig. 4 top) yields the per-
tinent relative distance in the normal direction gN be-
tween the two adjacent rigid bodies [29]:

gN = −rT
Dn1

= [
(1 − c θ2)L2/2 + (1 − c θ1)L1/2 + δ + x2

− x1
]

cos(α − θ1) + (− s θ2L2/2 − s θ1L1/2

+ y2 − y1) sin(θ1 − α)

− sin(θ1 − θ2)
σ2

sα
(15)
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Case 2: One of the edges of contour 1 comes in con-
tact with an unknown point of contour 2 (Fig. 4 bot-
tom). Similarly to Case 1, we have

rT
Dt2 = 0 ⇒

σ2

sa
= − sαL2/2 + (− s θ1L1/2 + y2 − y1)

× cos(α − θ2) − cos(θ1 − θ2)
σ1

sa

+ [
(1 − c θ1)L1/2 + L2/2 + δ + x2 − x1

]

× sin(α − θ2) (16)

And:

gN = rT
Dn2

= [
(1 − c θ2)L2/2 + (1 − c θ1)L1/2 + δ

+ x2 − x1
]

cos(α − θ2) + (− s θ2L2/2

− s θ1L1/2 + y2 − y1) sin(θ2 − α)

+ sin(θ1 − θ2)
σ1

sα
(17)

Equation (17) verifies the pertinent equations of the
simpler (deck-abutment) impact case [1], if the body
“2” is replaced with a rigid boundary: i.e. x2 = y2 =
θ2 = 0. In summary, when θ1 �= θ2 (Fig. 4) the dis-
tance is determined by the minimum distance yielded
from (15) and (17), which does not violate the con-
straint (10).

3.2 Contact velocities

The differentiation of the pertinent relative distances,
with respect to time, gives the contact velocities in
the normal direction. In the tangential direction, con-
tact velocities are determined with the help of the cor-
responding tangential direction vectors t and the Ja-
cobean matrices JCj [29]. The same two cases hold.

Case 1 (gN = −rT
Dn1): For the normal contact veloc-

ity γN the differentiation of (15) gives

γN = wT
Nu

wN =

⎛

⎜⎜⎜⎜⎜⎜
⎝

− cos(α − θ1)

sin(α − θ1)

r̃N1

cos(α − θ1)

− sin(α − θ1)

r̃N2

⎞

⎟⎟⎟⎟⎟⎟
⎠

r̃N1 =
{
(− s θ2L2/2 + y2 − y1) cos(α − θ1)

− σ2

sα
cos(θ1 − θ2) + [

(1 − c θ2)L2/2

+ L1/2 + δ + x2 − x1
]

sin(α − θ1)

}

r̃N2 =
{

sin(α − θ1 + θ2)L2/2 + σ2

sα
cos(θ1 − θ2)

}

(18)

For the tangential contact velocity γT we have

γT = wT
T u

wT = tT1 (JC1 − JC2) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

sin(α − θ1)

cos(α − θ1)

r̃T 1

− sin(α − θ1)

− cos(α − θ1)

r̃T 2

⎞

⎟⎟⎟⎟⎟⎟
⎠

r̃T 1 = cαL1/2

r̃T 2 =
{

cos(α + θ2 − θ1)L2/2 − sin(θ2 − θ1)

× σ2

sinα

}
(19)

Case 2 (gN = rT
Dn2): Similarly, with Case 1 we ob-

tain

γN = wT
Nu

wN =

⎛

⎜⎜⎜⎜⎜⎜
⎝

− cos(α − θ2)

sin(α − θ2)

r̃N1

cos(α − θ2)

− sin(α − θ2)

r̃N2

⎞

⎟⎟⎟⎟⎟⎟
⎠

r̃N1 =
{

sin(α + θ1 − θ2)L1/2 + σ1

sα
cos(θ1 − θ2)

}

r̃N2 =
{
[
L2/2 + (1 − c θ1)L1/2 + δ + x2 − x1

]

× sin(α − θ2) + (− s θ1L1/2 + y2 − y1)

× cos(α − θ2) − σ1

sα
cos(θ1 − θ2)

}
(20)

And:

γT = wT
T u

wT =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

sin(α − θ2)

cos(α − θ2)

r̃T 1

− sin(α − θ2)

− cos(α − θ2)

r̃T 2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

Author's personal copy



Nonsmooth analysis of the impact between successive skew bridge-segments 917

r̃T 1 =
{

cos(α + θ1 − θ2)L1/2 − sin(θ1 − θ2)
σ1

sα

}

r̃T 2 = cαL2/2 (21)

4 Nonsmooth analysis

4.1 Double frictionless impact

Utilizing the rigid body assumption, full-edge impact
is modeled as a double-point impact and the discus-
sion starts with the frictionless case. Full-edge con-
tact (Fig. 5) occurs when the two bodies come to
contact while their normal and tangential direction
vectors are parallel to each other (i.e. nT

1 t2 = 0 or
equivalently nT

2 t1 = 0). Indeed, the kinematical condi-
tions nT

1 t2 = 0 or nT
2 t1 = 0 confirm that full-edge im-

pact occurs when the pre-impact rotations are equal
θ−

1 = θ−
2 :

nT
1 t2 = 0 ⇒ sin(θ1 − θ2) = 0 (22)

In this case the relative contact distance is given from
either (15) or (17). Without loss of generality, it is
assumed that the pre-impact rotations are both equal
to zero θ−

1 = θ−
2 = 0, while the pre-impact trans-

lational velocities arbitrary. Equations (15) and (17)
simplify to

gN = −rT
Dn1 = rT

Dn2

= (δ + x2 − x1) cα + (y2 − y1) sα = 0 (23)

For θ−
1 = θ−

2 = 0, (18) and (20) give the same normal
contact velocity. Similarly, (19) and (21) return the
same tangential contact velocity. The direction vector
WN , simplifies to:

wT
N1 =

⎛

⎜⎜
⎝− cα sα

r11︷ ︸︸ ︷

(
sαL1

2
+ W

2 cα
) cα − sα (

sαL2

2
− W

2 cα
)

︸ ︷︷ ︸
r21

⎞

⎟⎟
⎠

wT
N2 =

⎛

⎜⎜
⎝− cα sα

r12︷ ︸︸ ︷

(
sαL1

2
− W

2 cα
) cα − sα (

sαL2

2
+ W

2 cα
)

︸ ︷︷ ︸
r22

⎞

⎟⎟
⎠

WT
N =

(
wT

N1

wT
N2

)

(24)

where r11, r12, r21 and r22 are the lever arms shown in Fig. 5. Hence, the GNN matrix becomes

GNN =
⎛

⎝
1

m1
+ 1

m2
+ r2

11
I1

+ r2
21
I2

1
m1

+ 1
m2

+ r11r12
I1

+ r21r22
I2

1
m1

+ 1
m2

+ r11r12
I1

+ r21r22
I2

1
m1

+ 1
m2

+ r2
12
I1

+ r2
22
I2

⎞

⎠ (25)

The inverse of the matrix GNN , G−1
NN , is the effective mass during collision in the normal direction [29]:

G−1
NN = 1

|GNN |

⎛

⎝
1

m1
+ 1

m2
+ r2

12
I1

+ r2
22
I2

−( 1
m1

+ 1
m2

+ r11r12
I1

+ r21r22
I2

)

−( 1
m1

+ 1
m2

+ r11r12
I1

+ r21r22
I2

) 1
m1

+ 1
m2

+ r2
11
I1

+ r2
21
I2

⎞

⎠ (26)

in which the determinant |GNN | is given in the
Appendix.

|GNN | = (r11r21 − r12r22)
2

I1I2
+

[
(r11 − r12)

2

I1

+ (r21 − r22)
2

I2

](
1

m1
+ 1

m2

)
(27)

According to Newton’s impact law [29], the vector of
impulses ΛN along the normal direction of contact is:

ΛN =
(

ΛN1

ΛN2

)
= −G−1

NN(E + ¯̄εN)γ −
N (28)

where E, is the identity matrix. When the coefficients
of restitution at the two impacts are the same and equal
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918 E.G. Dimitrakopoulos

with εN , (28) simplifies to

ΛN1
|GNN |

γ −
N

= −(1 + εN)

(
r12

r12 − r11

I1
+ r22

r22 − r21

I2

)

= −
(

1 + εN

)
W

cα

(
r22

I2
− r12

I1

)

ΛN2
|GNN |

γ −
N

= −
(

1 + εN

)(
r11

r11 − r12

I1
+ r21

r21 − r22

I2

)

= −(1 + εN)
W

cα

(
r11

I1
− r21

I2

)

(29)

In this case, the post-impact angular velocities of the
two bodies are (4) equal and both positive (in the di-
rection of increasing the skew angle):

u+
θ1 = u+

θ2

= − (1 + εN)γ −
N

|GNN |I1I2

L1 + L2

2

W 2 sinα

cos2 α
> 0 (30)

Equations (29) give the normal impulses ΛN1 and
ΛN2 as a function of the geometry (α, L1, L2, W ),
the coefficient of restitution (in the normal direction)
εN , and the inertia parameters (the mass moments of
inertia I1, I2 and the determinate |GNN |). In addi-
tion, the physical inequality constraint ΛN ≥ 0 should
hold, to ensure the unilateral nature of (dry) impact. In
multi-point impacts the satisfaction of the inequality
constraint demands special attention [29]. Taking into
account that by definition: (1 + εN) > 0, |GNN | > 0
and that contact occurs only when the relative velocity
is negative γ −

N ≤ 0 (which denotes approach), we have

ΛN1 > 0 ⇒ I1

I2
>

η1 − 1

η2 + 1

ΛN2 > 0 ⇒ I2

I1
>

η2 − 1

η1 + 1

(31)

where ηj is the dimensionless skew ratio introduced,
for frictionless impact, in Dimitrakopoulos [1]:

ηj = sin 2α

2(W/Lj )
, j = 1,2 (32)

ηj relates the ratio of the two sides in plan (L,W ) with
the skew angle, α. Inequalities (31) unveil a mecha-
nism considerably more complicated compared with

the case of a skew rigid body pounding against an in-
elastic half-space [1]. In particular, the signs of the im-
pulses depend not only on the geometry (and hence the
proposed dimensionless criteria η1, η2), but also on the
ratio of the mass moments of inertial of the two bod-
ies I1/I2. The following special cases shed some light
on the underlying mechanism of the examined impact
problem.

1. When the two segments are of equal length L1 =
L2 → η1/η2 = I1/I2 = 1, the normal impulses in
both points are always positive, since

ΛN1 > 0 ⇒ I1

I2
>

η1 − 1

η2 − 1

⇒ 1 >
η − 1

η + 1
⇒ 1 > −1

ΛN2 > 0 ⇒ I2

I1
>

η2 − 1

η1 + 1

⇒ 1 >
η − 1

η + 1
⇒ 1 > −1

(33)

2. When the two segments have different lengths but
equal inertias, we have

ΛN1 > 0 ⇒ r22 > r12 ⇒ η1 − η2 < 2

⇒ (L1 − L2) <
4W

sin 2α

ΛN2 > 0 ⇒ r11 > r21 ⇒ η2 − η1 < 2

⇒ (L2 − L1) <
4W

sin 2α

(34)

In practice, the length of the segment is directly re-
lated to its mass, however, this theoretical assump-
tion reveals the effect of the geometry on the out-
come of the impact. Figure 6 visualizes an example
where ΛN2 = 0 (r11 = r21).

3. When the inertia of one segment is infinite com-
pared to that of the other segment, e.g. I2/I1 → ∞,
we have

ΛN1
I1|GNN |

γ −
N

= (1 + εN)
W

cα
r12 ⇒ ΛN1 > 0

⇒ r12 < 0 ⇒ η1 < 1

ΛN2
I1|GNN |

γ −
N

= (1 + εN)
W

cα
r11 ⇒ ΛN2 > 0

⇒ r11 > 0 ⇒ η1 > −1

(35)

According to (35), when η1 > 1 impulse at the
acute corner becomes negative ΛN1 < 0 which is
not feasible. The physical interpretation of a nega-
tive impulse is that contact at that point is lost and
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Nonsmooth analysis of the impact between successive skew bridge-segments 919

Fig. 6 Assuming the
masses and mass moments
of inertia of the two bodies
are equal, contact at point 2
is lost (white arrows) when
r11 = r21

Fig. 7 The results of (37).
The negative sign of
impulse at contact point 2
indicates that contact at that
point is lost

hence the formulation of the impact as double im-
pact does not hold. Instead, when η1 > 1, the im-
pact problem should be treated as a single impact at
the obtuse corner at which the impulse is positive,
ΛN2 > 0. In short, the behavior for I2/I1 → ∞ (or
I1/I2 → ∞) corresponds to the simpler case of a
single skew segment pounding against an inelastic
half-space [1].

4. To further investigate the impact mechanism, the
mass of the substructure is assumed negligible
compared with the mass of the deck segments.
Thus, the mass moments of inertia of the two bridge
segments are given solely by the inertia of the cor-
responding skew deck segments (rigid bodies):

Ii = mi

[
L2

i

12
+ W 2

12 cos2 a

]
, i = 1,2 (36)

With the help of (36), and the additional assump-
tion that the two skew deck segments have the same

density hence the masses ratio is equal with the
lengths ratio, m1/m2 = L1/L2 (29) gives

Λ∗
N1 = ΛN1

m1|GNN |
−3γ −

N (1 + εN)

= L1

L2

L2
W

sin 2α + 2

(L2
W

cosα)2 + 1
−

L1
W

sin 2α − 2

(L1
W

cosα)2 + 1

Λ∗
N2 = ΛN2

m2|GNN |
−3γ −

N (1 + εN)

= L2

L1

L1
W

sin 2α + 2

(L1
W

cosα)2 + 1
−

L2
W

sin 2α − 2

(L2
W

cosα)2 + 1

(37)

where Λ∗
N1,Λ

∗
N2 are normalized values of ΛN1

and ΛN2 respectively. Figure 7 presents the im-
pulses Λ∗

N1 and Λ∗
N2 for different skew angles

and length ratios. Most importantly, Fig. 7 demon-
strates that when the length ratio assumes high val-
ues, (e.g. L1/L2 = 2.0) contact at one of the two
contact points may be lost (in this case at point 2)
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920 E.G. Dimitrakopoulos

Fig. 8 Full-edge frictional
impact between two skew
deck segments (considered
as rigid bodies).
Conventional (top) and
proposed (bottom)
simulation approach

for a sufficient high value of the skew angle (α). In
other words, even full edge impact may in essence
be a single point impact, depending on the inertia
of the two segments and the whole geometry (in
plan). This non-intuitive impact behavior has not
received the attention it deserves when simulating
the seismic behavior of skew bridges with in-deck
joints.

4.2 Double frictional impact

Consider the frictional case of the full-edge impact
of Fig. 8. The “conventional” simulation approach
(Fig. 8 top) is to consider the normal and the tangential
ΛT = {ΛT i} impulses of each contact point i explic-
itly (Fig. 8 top). In this case the direction matrix of the
tangential contact impulses is

WT
T =

(
sα cα rT 1 −sα − cα rT 2

sα cα rT 1 −sα − cα rT 2

)

WT ∈R
6×2 (38)

This description (Fig. 8 top) of double impact, ne-
glects that the two (point) impacts are linearly de-

pendent in the tangential direction and, as a conse-
quence GNT , GT N and GT T (6) are all singular matri-
ces. This is a typical case of overconstrained impacts
which arise often in multibody dynamics with multi-
contacts [26]. The present study proposes an alterna-
tive description of the double impact, which does not
over-constrain the problem and, at the same time, al-
lows for a closed-form solution avoiding all singular-
ities during solution of the LCP. Instead of examining
the tangential impulse in each point explicitly (Fig. 8
top), the proposed simulation considers solely the re-
sultant tangential impulse ΛT (Fig. 8 top). With refer-
ence to Fig. 8, the following straightforward relation-
ship holds:

ΛT 1 + ΛT 2 = μΛN1 + μΛN2 = (
μ μ

)(
ΛN1

ΛN2

)

= ¯̄μΛN = ΛT (39)

where ¯̄μ = (
μ μ

)
(Fig. 8 bottom). Compared with the

ad hoc approach, proposed in [1], specifically for dou-
ble stick, the present proposal is more generic as it
is valid for all feasible impact states (Fig. 9). The di-
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Fig. 9 The potential impact states (solutions) of the double-impact problem of Fig. 8

rection vector for the single tangential impulse (Fig. 8
bottom) becomes

WT
T = (

sα cα rT 1 − sα − cα rT 2
)

WT ∈R
6×1 (40)

The description of the normal impulses remains the
same (24). Then,GNT , GT N , and GT T are, see (6),

GNT = WT
N M−1WT =

(
r11rT 1

I1
+ r21rT 2

I2
r12rT 1

I1
+ r22rT 2

I2

)

= GT
T N

GNT ∈ R
2×1

GT T = WT
T M−1WT = 1

m1
+ 1

m2
+ r2

T 1

I1
+ r2

T 2

I2
GT T ∈R

1×1

(41)

The discussion of each potential impact state fol-
lows closely the analysis of the simpler impact config-
uration presented in [1]. The potential outcomes of the
frictional impact of Fig. 8 are (Fig. 9): three (3) impact
states wherein both impact points are active (ΛN1 > 0
and ΛN2 > 0) (double forward slip, double back-

ward slip and double stick), and the six impact states,
wherein only one of the two impact points presents a
positive impulse (ΛN1 > 0 or ΛN2 > 0). Double im-
pacts where ΛN = 0 holds at both impact points, lack
physical interpretation and are not considered.

Double backward slip (Fig. 9(i)) The complemen-
tarity conditions (8) for ΛN1 > 0, ΛN2 > 0 and
ΛT = μ(ΛN1 + ΛN2) = + ¯̄μΛN yield vN1 = vN2 =
vT R = 0, ΛT R = 2 ¯̄μΛN and ΛT L = 0. It follows from
(7) that the impulses in the normal direction are

ΛN = −(GNN + GNT
¯̄μ)−1( ¯̄εN + E)γ −

N ⇒(
ΛN1

ΛN2

)

= − (1 + εN)γ −
N

D1

×
(

(r12−r11)(r12+μrT 1)
I1

+ (r22−r21)(r22+μrT 2)
I2

(r11−r12)(r11+μrT 1)
I1

+ (r21−r22)(r21+μrT 2)
I2

)

(42)
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922 E.G. Dimitrakopoulos

The determinate D1 = |GNN + GNT
¯̄μ| and matrix

(GNN + GNT
¯̄μ)−1 are given in the Appendix. With

the help of (42), the tangential post-impact velocity,
from (7), becomes

γ +
T

γ −
N

= γ −
T

γ −
N

− 1 + εN

D1

{
μ

m̄

[
(r11 − r12)

2

I1
+ (r21 − r22)

2

I2

]

+ 1

I1I2

[
(r21 − r22)rT 1 + (r12 − r11)rT 2

]

× [
(r21 − r22)μrT 1 + (r12 − r11)μrT 2 + r12r21

− r11r22
]}

(43)

In the case of double backward slip, the post-impact
angular velocities of the two bodies are equal, since
(4) gives

u+
θ1 = u+

θ2 = −(1 + εN)
γ −
N

D1

1

I1I2

L1 + L2

2

× W 2

cosα
(tanα + μ) > 0 (44)

Double forward slip (Fig. 9(iii)) The analysis of the
double forward slip case (Fig. 9(iii)) follows the same
procedure as for double backward slip. The impulses
in the normal direction are

ΛN = −(1 + εN)γ −
N (GNN − GNT

¯̄μ)−1
(

1
1

)
⇒

(
ΛN1
ΛN2

)

= −(1 + εN)
γ −
N

D2

×
⎛

⎝
− (r11−r12)(r12−μrT 1)

I1
− (r21−r22)(r22−μrT 2)

I2
(r11−r12)(r11−μrT 1)

I1
+ (r21−r22)(r21−μrT 2)

I2

⎞

⎠

(45)

Again, the determinate D2 = |GNN − GNT
¯̄μ| and

matrix (GNN − GNT
¯̄μ)−1 are given in the Appendix.

The pertinent tangential post-impact velocity is

γ +
T

γ −
N

= γ −
T

γ −
N

− (1 + εN)

× 1

D2

{
μ

m̄

[
(r11 − r12)

2

I1
+ (r21 − r22)

2

I2

]

+ 1

I1I2

[
(r21 − r22)rT 1 + (r12 − r11)rT 2

]

× [
(r21 − r22)μrT 1 + (r12 − r11)μrT 2

+ r11r22 − r21r12
]}

(46)

Double stick (Fig. 9(ii)) Double stick takes place
when ΛN1 > 0, ΛN2 > 0 and |ΛT | < μ(ΛN1 +
ΛN2) = ¯̄μΛN , while the corresponding post-impact
velocities are zero. To find the unknown impulses in
the normal ΛN (vector) and the tangential direction
ΛT (scalar), the following system of coupled equa-
tions (7) must be solved:

γ +
N = γ −

N + GNNΛN + GNT ΛT + ¯̄εNγ −
N = 0

γ +
T = γ −

T + GT NΛN + GT T ΛT = 0
(47)

Adopting the proposed simulation (Fig. 8 bottom)
and the corresponding definitions (40) and (41), this
step is now trivial as no singular matrix is involved in
the solution process. After some algebra the normal
impulses and the tangential impulse are derived:

ΛN = 1

GT T − GT N G−1
NNGNT

[
G−1

NNGNT γ −
T

− [
G−1

NNGNT GT N + (GT T

− GT N G−1
NNGNT )E

]
G−1

NN( ¯̄εN + E)γ −
N

]

ΛT = GT N G−1
NN( ¯̄εN + E)γ −

N − γ −
T

GT T − GT N G−1
NNGNT

(48)

where product GT N G−1
NNGNT yields a scalar value

(see the Appendix).
Double stick, or double slip, occurs according to

the following kinematical criteria for the pre-impact
contact velocities:

(
γ −
T

γ −
N

)

f

<
γ −
T

γ −
N

<

(
γ −
T

γ −
N

)

b

stick

γ −
T

γ −
N

≤
(

γ −
T

γ −
N

)

f

forward slip (49)

γ −
T

γ −
N

≥
(

γ −
T

γ −
N

)

b

backward slip

where the two limit values are

(
γ −
T

γ −
N

)

f

= (1 + εN)
μ + m̄

4
(L1+L2)

2

I1+I2
cα(μ cα − sα)

1 − m̄
4

(L1+L2)
2

I1+I2
sα(μ cα − sα)

(
γ −
T

γ −
N

)

b

= (1 + εN)
μ + m̄

4
(L1+L2)

2

I1+I2
cα(μ cα + sα)

1 + m̄
4

(L1+L2)
2

I1+I2
sα(μ cα + sα)

(50)

with: m̄ = m1m2
m1+m2

and γ −
N < 0.
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Slip or stick at point 1 (Fig. 9(vii)–(ix)) The re-
maining impact states are in essence single impacts,
since only one of the two contact points is active (i.e.
ΛN > 0 holds). The analysis is similar with the one
in [1]. The normal impulse for backward (Fig. 9(vii))
or forward (Fig. 9(ix)) slip at point 1 is

ΛN1

m̄γ −
N

= − 1

m̄

1 + εN

1
m̄

+ r2
11±μr11rT 1

I1
+ r2

21±μr21rT 2
I2

(51)

and the pertinent post-impact velocities:

γ +
T

γ −
N

= γ −
T

γ −
N

− ± μ
m̄

+ r11rT 1±μr2
T 1

I1
+ r21rT 2±μr2

T 2
I2

1
m̄

+ r2
11−μr11rT 1

I1
+ r2

21−μr21rT 2
I2

× (1 + εN) (52)

In (51) and (52), sign (+) holds for backward slip and
sign (−) corresponds to forward slip. When stick takes
place at point 1 (Fig. 9(viii)) the normal and tangential
impulses are

ΛN1

m̄γ −
N

= 1

m̄

( r11rT 1
I1

+ r21rT 2
I2

)
γ −
T

γ −
N

− ( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

)(1 + εN)

( 1
m̄

+ r2
11
I1

+ r2
21
I2

)( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

) − ( r11rT 1
I1

+ r21rT 2
I2

)2

ΛT

m̄γ −
N

= 1

m̄

( r11rT 1
I1

+ r21rT 2
I2

)(1 + εN) − ( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

)
γ −
T

γ −
N

( 1
m̄

+ r2
11
I1

+ r2
21
I2

)( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

) − ( r11rT 1
I1

+ r21rT 2
I2

)2

(53)

For single impact at point 1, (49) holds, but the limits
between slip and stick are
(

γ −
T

γ −
N

)

f

= (1 + εN)
− μ

m̄
+ r11rT 1−μr2

T 1
I1

+ r21rT 2−μr2
T 2

I2

1
m̄

+ r2
11−μr11rT 1

I1
+ r2

21−μr21rT 2
I2(

γ −
T

γ −
N

)

b

= (1 + εN)

μ
m̄

+ r11rT 1+μr2
T 1

I1
+ r21rT 2+μr2

T 2
I2

1
m̄

+ r2
11+μr11rT 1

I1
+ r2

21+μr21rT 2
I2

(54)

Slip or stick at point 2 (Fig. 9(iv)–(vi)) Similarly, the
normal impulse for slip at point 2 is

ΛN2

m̄γ −
N

= − 1

m̄

1 + εN

1
m̄

+ r2
12±μr12rT 1

I1
+ r2

22±μr22rT 2
I2

(55)

And the post-impact velocities:

γ +
T

γ −
N

= γ −
T

γ −
N

− ± μ
m̄

+ r12rT 1±μr2
T 1

I1
+ r22rT 2±μr2

T 2
I2

1
m̄

+ r2
12−μr12rT 1

I1
+ r2

22−μr22rT 2
I2

× (1 + εN) (56)

Again, in (55) and (56), sign (+) holds for backward
slip (Fig. 9(iv)) and sign (−) corresponds to forward

slip (Fig. 9(vi)). Also, (55) and (56) are the same as
(51) and (52) if levers r12 and r22 are replaced with
r11 and r21, respectively.

The normal and tangential impulses for stick at
point 2 (Fig. 9(v)) are

ΛN2

m̄γ −
N

= 1

m̄

( r12rT 1
I1

+ r22rT 2
I2

)
γ −
T

γ −
N

− ( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

)(1 + εN)

( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

)( 1
m̄

+ r2
12
I1

+ r2
22
I2

) − ( r12rT 1
I1

+ r22rT 2
I2

)2

ΛT

m̄γ −
N

= 1

m̄

( r12rT 1
I1

+ r22rT 2
I2

)(1 + εN) − ( 1
m̄

+ r2
12
I1

+ r2
22
I2

)
γ −
T

γ −
N

( 1
m̄

+ r2
T 1
I1

+ r2
T 2
I2

)( 1
m̄

+ r2
12
I1

+ r2
22
I2

) − ( r12rT 1
I1

+ r22rT 2
I2

)2

(57)
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Table 1 Single frictional impact: equations and substitutions

θ−
1 − θ−

2 < 0 (e.g. θ−
1 = 0, θ−

2 > 0) rT
Dt1 = 0 (Case 1)

WN → from (18),
WT → from (19),
σ2 = −W tan α /2 and
σ1 → from (14)

Impact at point 1:
levers in (51) to (53):
r11, r21, rT 1, rT 2 correspond to: r̃N1, r̃N2, r̃T 1, r̃T 2
from (18), (19)

θ−
1 − θ−

2 > 0 (e.g. θ−
1 = 0, θ−

2 < 0) rT
Dt1 = 0 (Case 1)

WN → from (18),
WT → from (19),
σ2 = +W tan α /2 and
σ1 → from (14)

Impact at point 2:
levers in (55) to (57):
r12, r22, rT 1, rT 2 correspond to: r̃N1, r̃N2, r̃T 1, r̃T 2
from (18), (19)

θ−
1 − θ−

2 < 0 (e.g. θ−
1 < 0, θ−

2 = 0) rT
Dt2 = 0 (Case 2)

WN → from (20),
WT → from (21),
σ1 = W tan α/2,
σ2 → from (16)

Impact at point 1: levers in (51) to (53): r11, r21,
rT 1, rT 2 correspond to: r̃N1, r̃N2, r̃T 1, r̃T 2 from
(20), (21)

θ−
1 − θ−

2 > 0 (e.g. θ−
1 > 0, θ−

2 = 0) rT
Dt2 = 0 (Case 2)

WN → from (20),
WT → from (21),
σ1 = −W tan α/2,
σ2 → from (16)

Impact at point 2:
levers in (55) to (57):
r12, r22, rT 1, rT 2 correspond to: r̃N1, r̃N2, r̃T 1, r̃T 2
from (20), (21)

For single impact at point 2 the velocity limits be-
tween slip and stick in (49) are given from (54) replac-
ing r11 with r12 and r21 with r22.

Synopsis In summary, two conditions govern the
post-impact state of the frictional multi-impact prob-
lem of Fig. 8: (i) the geometrical and inertial condi-
tions (31) determine which contact points are active
(the pertinent normal impulse is positive ΛN > 0) and
(ii) the kinematical conditions (49) together with the
contact parameters (εN and μ) determine whether the
impact results in (forward/backward) slip or stick.

4.3 Single frictional impact

Single-impacts occur when the two bodies come in
touch with different pre-impact rotations θ−

1 �= θ−
2

and/or different angular velocities. The proposed LCP
(7), (8) describes also single frictional impacts, as a
special case when only one impact point is active
(ΛN > 0 holds). In particular, the closed-form so-
lutions of Sect. 4.2 for single-impact at point 1 (or
point 2) are still valid provided the appropriate levers
are used (see Table 1).

Figures 10 and 11 illustrate the existential con-
ditions of the three different (frictional) post-impact
states (forward slip, backward slip and stick) in the
plane: pre-impact tangential and normal velocity ra-
tio (γ −

T /γ −
N )—pre-impact rotation (θ−). Both Figs. 10

and 11 concern bridges with skew angle α = 30o

and length ratios L1/L2 = 2.0 (top), 1.0 (middle),
and 0.5 (bottom). Figure 10 covers the contact case
rT
Dt2 = 0, while Fig. 11 covers the case rT

Dt1 = 0.
For convenience, all results in Figs. 10 and 11 are
based on the assumption that the impact point is lo-
cated at a fixed distance from the nearest corner.
In particular, for Fig. 10 it is assumed that σ2 =
±0.9W tanα/2 accordingly, whereas for Fig. 11 σ1 =
±0.9W tanα/2. This is just for practicality in order to
specify a particular contact configuration among the
infinite configurations covered with the same equa-
tions.

The tendency to stick (gray area in Figs. 10 and 11)
increases with the coefficient of friction μ and with
the difference in length of the two segments (directly
related to the difference in mass). Systematically, the
stick area is broader for impact near the obtuse corner
of the shorter segment (with the lower mass). This ob-
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Fig. 10 The three distinct
single (frictional) impact
states in the (γ −

T /γ −
N − θ−)

plane, when
θ−

1 �= 0, θ−
2 = 0

servation is in agreement with the empirical observa-
tions that skew bridges tend to bind in their obtuse cor-
ners. A comprehensive analysis of the relative impor-
tance of all important parameters is beyond the scope
of this paper. However, the present sample results offer
a glimpse into the in-deck impact mechanism of skew
bridges.

5 Conclusions

The present study examines the in-deck impact of
multi-segment skew bridges; a lack of a thorough rel-
evant study is observed in literature. It adopts a nons-
mooth rigid body approach, combined with set-valued
(contact) force laws, and analyzes in depth the im-

pact response of a pair of planar skew (rigid) bod-
ies.

Key feature of this analysis is a linear comple-
mentarity formulation which encapsulates all physi-
cally feasible post-impact states such as “stick”, “slip”
of single-point and double-point impact. The existen-
tial conditions and pertinent closed-form solutions of
all post-impact states are derived. In the process, the
paper proposes a rational way to avoid the appear-
ance of singular matrices caused by dependent con-
straints.

The study shows that the geometry and the inertia
properties define the active contact points, while the
pre-impact kinematics and the contact parameters (the
coefficient of restitution and the coefficient of friction)
govern the behavior in the tangential direction of the
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Fig. 11 The three distinct
single (frictional) impact
states in the (γ −

T /γ −
N − θ−)

plane, when
θ−

1 = 0, θ−
2 �= 0

impact (slip or stick). The paper also offers equations
which solve the contact kinematics between two adja-
cent skew planar rigid bodies and can be used to treat
successively as many pairs of skew bridge-segments
as necessary.

The results of this study confirm the empirically ob-
served tendency of skew bridges to “stick” at the ob-
tuse corner, and subsequently rotate in such a way that
the skew angle increases. On the same time however,
the study shows that the examined impact mechanism
of two (skew) bodies configuration is overall consid-

erably complicated and not adequately understood so
far. Though the paper focuses on an impact problem
of skew bridges, the adopted mechanical configuration
and the proposed method of analysis might also be ap-
propriate for different impact phenomena of more gen-
eral interest.
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Appendix

The determinate |GNN | is

|GNN | = (r11r21 − r12r22)
2

I1I2
+

[
(r11 − r12)

2

I1
+ (r21 − r22)

2

I2

](
1

m1
+ 1

m2

)
(58)

The inverse of matrix (GNN + GNT
¯̄μ) and its determinate D1 can be written as

(
GNN + GNT

¯̄μ)−1

= 1

D1

⎛

⎝
1

m1
+ r2

12+μr12rT 1
I1

+ 1
m2

+ r2
22+μr22rT 2

I2
−( 1

m1
+ r11r12+μr11rT 1

I1
+ 1

m2
+ r21r22+μr21rT 2

I2
)

−(1 + r11r12+μr12rT 1
I1

+ 1
m2

+ r21r22+μr22rT 2
I2

) 1
m1

+ r2
11+μr11rT 1

I1
+ 1

m2
+ r2

21+μr21rT 2
I2

⎞

⎠

D1 = |GNN + GNT
¯̄μ| = m1 + m2

m1m2

[
(r11 − r12)

2

I1
+ (r21 − r22)

2

I2

]

+ r12r21 − r11r22

I1I2

[
μrT 1(r21 − r22) + μrT 2(r12 − r11) + r12r21 − r11r22

]

(59)

Similarly for the inverse of matrix (GNN − GNT
¯̄μ) and its determinate D2, we have

(
GNN − GNT

¯̄μ)−1

= 1

D2

⎛

⎝
1

m1
+ 1

m2
+ r2

12−μr12rT 1
I1

+ r2
22−μr22rT 2

I2
−( 1

m1
+ 1

m2
+ r11r12−μr11rT 1

I1
+ r21r22−μr21rT 2

I2
)

−( 1
m1

+ 1
m2

+ r11r12−μr12rT 1
I1

+ r21r22−μr22rT 2
I2

) 1
m1

+ 1
m2

+ r2
11−μr11rT 1

I1
+ r2

21−μr21rT 2
I2

⎞

⎠

D2 = |GNN − GNT
¯̄μ| = m1 + m2

m1m2

[
(r11 − r12)

2

I1
+ (r21 − r22)

2

I2

]

+ r12r21 − r11r22

I1I2

[
μrT 1(r22 − r21) + μrT 2(r11 − r12) + r12r21 − r11r22

]

(60)

For μ = 0 (59) and (60) reduce to (26) and (58) of frictionless collisions.
Finally, the product GT N G−1

NNGNT returns the scalar value:

GT NG−1
NN GNT

= 1

|GNN |
[(

1

m1
+ 1

m2

)(
r11 − r12

I1
rT 1 + r21 − r22

I2
rT 2

)2

+
(

r2
T 1

I1
+ r2

T 2

I2

)
(r11r22 − r12r21)

2

I1I2

]
(61)
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