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Abstract The oblique contact/impact of skew bridges
triggers a unique rotational mechanism which earth-
quake reconnaissance reports correlate with deck un-
seating of such bridges. Building on the work of
other researchers, the present study adopts a fully non-
smooth rigid body approach and set-valued force laws,
in order to analyze in depth this oblique multi-impact
phenomenon. A linear complementarity formulation
is proposed which yields a great variety of (multi-)
impact states, depending on the initial (pre-impact)
conditions, such as “slip” or “stick” at one corner
(single-impact) or two corners (double-impact) of the
body. The pertinent existential conditions of those im-
pact states reveal a complex dynamic behavior. With
respect to the rotational mechanism associated with
double-impact, the physically feasible impact states as
well as, counter-intuitive exceptions are recognized.
The study proves that double oblique impact, both fric-
tionless and frictional, may or may not produce ro-
tation of the body and proposes criteria that distin-
guish each case. Most importantly, it is shown that
the tendency of skew bridges to rotate (and hence un-
seat) after deck-abutment collisions is not a factor of
the skew angle alone, but rather of the overall geom-
etry in-plan, plus the impact parameters (coefficient
of restitution and coefficient of friction). The study
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also provides a theoretical justification of the observed
tendency of skew bridges to jam at the obtuse cor-
ner and rotate in such a way that the skew angle in-
creases. Finally, counter-intuitive trends hidden in the
response are unveiled which indicate that, due to fric-
tion, a skew bridge may also rotate so that the skew
angle decreases.

Keywords Oblique impact · Friction · Unilateral
contact · Complementarity · Skew bridges · Concrete
bridges

1 Introduction

This paper focuses on the impact response of skew
bridges with deck-abutment expansion joints, while it
belongs to a broader study [1–3] on the problem of the
earthquake-induced pounding in (straight and skew)
bridges.

Skew bridges exhibit a unique seismic response that
is triggered by oblique impact. Earthquake reconnais-
sance reports [4] indicate that skew bridges often ro-
tate in the horizontal plane, thus tending to drop off the
supports at the acute corners [5] (Fig. 1). This behav-
ior results in a coupling of longitudinal and transver-
sal response, binding in one of the obtuse corners and
subsequently rotation in the direction of increasing the
skew angle [5] (Fig. 2).

Despite the recorded evidence from previous earth-
quakes, which underlines the importance of this mech-
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Fig. 1 Damage of a skew
bridge after the Tehuacan
1999 Mexico earthquake [6]

Fig. 2 Rotation
mechanism of skew
bridges—unseating,
adopted from [5]

anism, as well as the empirical vulnerability method-
ologies that acknowledge skew as a primary vulner-
ability factor in bridges [7], there are only a few at-
tempts to comprehend this mechanism. One of the first
was made by Maragakis et al. [8], motivated after the
aforementioned type of damage during the 1971 San
Fernando earthquake [4]. Maragakis et al. [8] focused
on the rigid body motions of a skew bridge, using a
rigid stick model of the bridge deck and spring ele-
ments to model piers. Pounding with the abutments
was simulated with an elastic spring activated after the
closure of the gap. More recently, Maleki [9] studied
single-span straight and skew bridges using a SDOF
model, in an attempt to estimate the forces developed
during collision.

In the vast majority of pertinent studies, including
the aforementioned ones, impact is considered as cen-

tric and is simulated with a contact-element (“com-
pliance”) method. However, contact in skew bridges
is oblique and multi-point (multi-impact), and disre-
garding this fact should be attributed to inherent dif-
ficulties in properly modeling it. As a consequence,
there is a lack of a thorough theoretical investigation,
and hence understanding, regarding this peculiarity of
skew bridges.

An alternative way to deal with such an impact and
investigate in depth the associated rotational mecha-
nism is within the context of non-smooth dynamics.
Key feature of this approach, originating from the pio-
neering studies of Moreau [10] and Panagiotopoulos
[11, 12], is the inequality form of the impact laws
which often is transformed to linear complementar-
ity. Notions of convex analysis, as well as set-valued
(force) laws, have been embedded naturally within this
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context [13]. In recent years an ever increasing num-
ber of structural problems is tackled with the notions
of non-smooth dynamics; for instance the seismic be-
havior of pounding structures where unilateral con-
tact configurations (impacts, continuous contacts, and
detachments) are mathematically treated as inequality
problems by Dimitrakopoulos et al. [3].

Within the framework of an event-based method-
ology [13–15] the seismic response of a bridge can
be decomposed into discontinuous events (e.g. im-
pacts) and continuous impact-free motion. Adopting
this standpoint, the main gap in the existing knowl-
edge regarding the seismic response of skew bridges is
the phenomenon of the aforementioned oblique multi-
impact (Fig. 2). The key objective of this paper is to
fill this gap and at the same time to illustrate the ef-
fectiveness of non-smooth dynamics in a case with
practical significance and multidisciplinary interest.
The motivation for this study originates from: (i) the
need to elucidate the oblique impact response of skew
bridges with deck-abutment joints, (ii) the importance
of this rotational mechanism manifested by empiri-
cal evidence and recognized by empirical vulnerability
methodologies for bridges, and (iii) the large number
of existing bridges of this type worldwide.

2 Proposed methodology

In [16] Payr and Glocker re-examined a benchmark
problem of impact dynamics illustrating the effective-
ness of their non-smooth set-valued approach when
compared with more conventional methodologies. The
present study builds on the work of Payr and Glocker
[16] extending their approach from single to a multi-
ple (double) frictional collision case, which encapsu-
lates a lot of the ‘physics’ of deck-abutment impact in
skew bridges. The bridge deck (in-between two suc-
cessive separation joints) is considered as a rigid body
moving in plane and the interaction between deck and
abutment is modeled as a unilateral contact.

Herein the most fundamental impact laws are
adopted in a set-valued form following [16]. Impact
is assumed to behave according to Newton’s law in
the normal direction and according to Coulomb’s fric-
tion law in the transversal direction. Hence, only two
impact parameters are needed to describe frictional
impact, the normal coefficient of restitution εN and
the coefficient of friction μ. It is reminded that New-
ton’s coefficient of restitution is taken as the ratio of

Fig. 3 Set-valued friction force law [16]

the (relative) contact velocities after, u+, and before,
u−, impact: u+ = −εNu− and it varies between zero
and one, εN ∈ [0,1]. In the transversal direction a zero
coefficient of restitution is assumed εT = 0.

Two set-valued maps, the unilateral primitive
(Fig. 3, right) and the Sgn(x) function (Fig. 3, left)
are adopted in the normal, ΛNi , and the transversal,
ΛT i , direction of impact i, respectively:

−ΛNi ∈ Upr(vNi) − ΛT i ∈ μiΛNi Sgn(vT i) (1)

Velocities vN, vT R and vT L are defined later on
with (8), (9), and (10).

The Sgn(x) function differs from the standard sgn
function, in the point x = 0 where the former yields a
set of values: Sgn(x = 0) = [−1,1], instead of a sin-
gle value sgn(x = 0) = 0. In [16], it is shown that the
Sgn function can be decomposed into two unilateral
primitives (Fig. 3), which is ideal when the problem
of impact is formulated as an inequality problem. With
the help of Fig. 3 the following decomposition can be
achieved:
⎧
⎪⎨

⎪⎩

−ΛT Ri ∈ Upr(vT Ri) ΛT Ri = μΛNi + ΛT i

−ΛT Li ∈ Upr(vT Li) ΛT Li = μΛNi − ΛT i

vT i = vT Ri − vT Li

(2)

or in vector form:

ΛT L = ¯̄μΛN − ΛT = 2 ¯̄μΛN − ΛT R (3)

where ¯̄μ = diag{μi}, ΛN = {ΛNi}, ΛT = {ΛT i},
ΛT L = {ΛT Li}, ΛT R = {ΛT Ri}.

The problem of frictional multi-impact is formu-
lated herein as a linear complementarity problem
(LCP). In the classical form, an LCP is a system of
linear equations: y = Ax + b, with matrices A and b
known, and y and x the unknown vectors under de-
termination, for which the following additional com-
plementarity conditions hold: y ≥ 0,x ≥ 0, yT x = 0.
More details on the LCP as well as an overview of the
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available algorithms for treating numerically an LCP
can be found in [17].

Newton–Euler equations in integrated form, taking
into account transversal forces (friction), read as fol-
lows:

M(u+ − u−) = WNΛN + WT ΛT (4)

where ΛN and ΛT are the impulse vectors in the
normal and the transversal direction of impact, re-
spectively, M is the mass matrix and W are the di-
rection vectors of the constraints (impact) in the nor-
mal (sub-index N ) WN = {wNi} and the transversal
(sub-index T ) WT = {wT i} direction; sub-indexes N ,
T are used throughout this paper in the same sense.
By pre-multiplying with WT

N M−1 and WT
T M−1,

(4) is converted to relative velocities in the normal,
γNi = wT

Niu, and the transversal, γT i = wT
T iu, direc-

tion of impact, respectively:

γ+
N − γ−

N = WT
N M−1WNΛN + WT

N M−1WT ΛT

γ+
T − γ−

T = WT
T M−1WNΛN + WT

T M−1WT ΛT

(5)

In (5) and throughout this paper superscript “+”
refers to the post-impact state, while super-script “−”
to the pre-impact state and γ = {γi}. Using the nota-
tion of Pfeiffer [18]:

GNN = WT
N M−1WN GNT = WT

N M−1WT

GT N = WT
T M−1WN GT T = WT

T M−1WT

(6)

Equations (5) are rewritten as

γ+
N − γ−

N = GNNΛN + GNT ΛT

γ+
T − γ−

T = GT NΛN + GT T ΛT

(7)

The following velocity jumps are defined:

vN
.= γ+

N + ¯̄εNγ−
N

vT
.= γ+

T = vT R − vT L

(8)

In the normal direction of the impact, the following
relation holds:

vN
.= γ+

N + ¯̄εNγ−
N

γ+
N = γ−

N + GNNΛN + GNT ΛT

ΛT = ΛT R − ¯̄μΛN

⎫
⎪⎬

⎪⎭
⇒

vN = (GNN − GNT
¯̄μ)ΛN + GNT ΛT R

+ ( ¯̄εN + E)γ−
T

(9)

Similarly in the transversal direction:

vT = vT R − vT L

γ+
T = γ−

T + GT NΛN + GT T ΛT

ΛT = ΛT R − ¯̄μΛN

⎫
⎪⎬

⎪⎭
⇒

vT R = (GT N − GT T
¯̄μ)ΛN + GT T ΛT R

+ Eγ−
T + vT L (10)

where ¯̄μ = diag{μi}, ¯̄εN = diag{εNi}, i is the index of
the impact points, E the identity matrix, and μ, εN , the
coefficients of friction and restitution, respectively.

From (6) to (10) an LCP is formulated that treats a
frictional multi-impact:

⎛

⎝
vN

vT R

ΛT L

⎞

⎠ =
⎛

⎜
⎝

GNN − GNT
¯̄μ GNT 0

GT N − GT T
¯̄μ GT T E

2 ¯̄μ −E 0

⎞

⎟
⎠

⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠

+
⎛

⎜
⎝

( ¯̄εN + E)γ−
N

Eγ−
T

0

⎞

⎟
⎠ (11)

⎛

⎝
vN

vT R

ΛT L

⎞

⎠ ≥ 0

⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠ ≥ 0

⎛

⎝
vN

vT R

ΛT L

⎞

⎠

T ⎛

⎝
ΛN

ΛT R

vT L

⎞

⎠ = 0 (12)

As illustrated in later sections, in the form of (11)
and (12) the formulated LCP yields a great variety of
solutions and is capable of encapsulating different im-
pact states such as “slip”, “stick” and reversal of sign,
both for single-impact [16] and for double-impact, and
contains also impacts of non-impulsive behavior. The
adopted approach is thus set-valued and non-smooth
in contrast to the commonly adopted, in earthquake
engineering literature, contact-element approach (see
for example references in [3]). The main difference
with the pertinent LCP of [16] that treats single col-
lisions, is that all elements of the LCP (11) are, in
the general case, matrices instead of scalar quanti-
ties. Similar LCP formulations have been proposed in
the past among others by Kwack and Lee [19] and
Klarbring and Bjrrkman [20]. The proposed LCP for-
mulation (11) and (12) though, is very well-suited for
the needs of the present analysis, which is confined to
analytical solutions.
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Fig. 4 Relative distance of
the two potential impact
points for planar
translational and rotational
motion of a skew bridge
segment (rigid body). Light
gray line—initial position,
dark gray line—position
after translational motion,
black line—position after
rotation

3 Geometric considerations

3.1 The kinematic part of the impact problem

The kinematic part of the impact problem consists in
expressing the relative distances gi (gap functions) and
the corresponding velocities γi of the (potential) im-
pact points i as a function of the generalized coordi-
nates qi . The generalized coordinate vector is com-
prised by the (three) degrees of freedom of a rigid
body in plan: two translational (x, y) along the two
horizontal axes and one rotational (θ) around the ver-
tical axis; qT = [x y θ ]. The pertinent velocities are
given by q̇ = u = (ux,uy,uθ )

T .
Figure 4 presents a skew bridge segment (rigid

body) moving in plan against a rigid barrier, which
herein is considered as an inelastic half-space. The rel-
ative distance of the two potential impact points gN1,
gN2 can be derived, after some geometric considera-
tions, as:

gN1 = (δ − x) cosα + y sinα + 1

2

[
L cosa(1 − cos θ)

+ (W/ cosa + L sina) sin θ
]

(13)

gN2 = (δ − x) cosα + y sinα − 1

2

[
L cosa(cos θ − 1)

+ (W/ cosa − L sina) sin θ
]

where δ is the gap width, α the skew angle, L the
length and W the width of the rigid body, respectively.

In order to shorten the equations, the following nota-
tions are introduced:

ca = cosa sa = sina rT = L ca/2

r1 = (L sa + W/ ca)/2 r2 = (L sa − W/ ca)/2

r̃N1 = 1

2
[L ca sin θ + 2r1 cos θ ]

r̃N2 = 1

2
[L ca sin θ + 2r2 cos θ ]

r̃T 1 = 1

2
[−2r1 sin θ + L ca cos θ ]

r̃T 2 = 1

2
[2r2 sin θ + L ca cos θ ]

(14)

Quantities r1, r2, and rT , are the lever arms of the
pertinent impulses Λ1 and Λ2 with respect to the
center of mass, under the assumption of small de-
formations (see Fig. 6 later on). Quantities r̃N1, r̃N2,
r̃T 1, r̃T 2 are the corresponding lever arms in the nor-
mal and the transversal direction of the two impacts
for large deformations, it follows that: r̃Ni →

(θ→0)
ri and

r̃T i →
(θ→0)

rT where i = 1,2.

The relative velocities of the two impacts in the
longitudinal direction, γN1 and γN2, are calculated by
differentiating in time the expressions of gN1 and
gN2 (13). In the transversal direction the relative ve-
locities, γT 1 and γT 2, are derived similarly after cal-
culating the distance variation (e.g. from the initial
position—light gray line) due to translational (dark
gray line) and rotational (black line) motion with the
help of Fig. 4.
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Fig. 5 Single-impact (left),
and multi-impact (right) of
a planar skew rigid body

γN1 = (− ca sa r̃N1)︸ ︷︷ ︸

wT
N1

⎛

⎝
ux

uy

uθ

⎞

⎠

︸ ︷︷ ︸
u

γN2 = (− ca sa r̃N2)︸ ︷︷ ︸

wT
N2

⎛

⎝
ux

uy

uθ

⎞

⎠

︸ ︷︷ ︸
u

γT 1 = (sa ca r̃T 1)︸ ︷︷ ︸

wT
T 1

⎛

⎝
ux

uy

uθ

⎞

⎠

︸ ︷︷ ︸
u

γT 2 = (sa ca r̃T 2)︸ ︷︷ ︸

wT
T 2

⎛

⎝
ux

uy

uθ

⎞

⎠

︸ ︷︷ ︸
u

(15)

3.2 Impact types considered

In skew bridges with deck-abutment joints, impact in
plan can take place either in a corner, single (point)
impact or along a side multi- (point) impact. In order
to cover all potential impact types, from a geometrical
point of view, the following cases are distinguished:
single-impact (Fig. 5, left) and multi-impact (Fig. 5,
right).

4 Frictionless impact

4.1 Single-frictionless impact

Firstly, the case of frictionless impact is discussed
without referring to the LCP (11). The effective mass

during collision, in the normal direction, G−1
NN [21], is

calculated as:

GNN
.= 1

m
+ r̃2

N

1

Im

G−1
NN = mIm

Im + r̃2
Nm

(16)

where the lever arm r̃N is taken as r̃N = r̃N1 or r̃N2

depending on the examined corner where impact takes
place and Im is the inertial mass. The impulse vector
ΛN can be estimated according to the assumed impact
law, herein Newton’s law [21]:

ΛN = −G−1
NN(E + ¯̄εN)γ−

N (17)

where E is the identity matrix and ¯̄εN = diag{εNi} the
diagonal matrix comprised by the coefficients of resti-
tution of impacts i.

In the case of single-impact (Fig. 5, left), (17) sim-
plifies to

ΛN = (1 + εN)
−mIm

Im + r̃2
Nm

×(− ca · u−
x + sa · u−

y + r̃ · u−
θ )

︸ ︷︷ ︸

γ −
N

⇔ ΛN

mγ −
N

= −1 + εN

1 + r̃2
N

ρ2

(18)

ρ is the radius of gyration, defined from ρ2 = Im/m.

4.2 Multiple frictionless impact

Full-edge impact is modeled (and referred to) as dou-
ble impact due to rigid body assumption. Double im-
pact occurs (Fig. 5, right) when θ− = 0 and u−

θ = 0.
Note that pre-impact velocities u−

x , u−
y are kept arbi-

trary. In this case matrix GNN and its inverse G−1
NN are

as follows:
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GNN
.=

( 1
m

+ r2
1

1
Im

1
m

+ r1r2
1
Im

1
m

+ r2r1
1
Im

1
m

+ r2
2

1
Im

)

G−1
NN = 1

(r1 − r2)2

(
Im + r2

2 m −Im − r1r2m

−Im − r2r1m Im + r2
1m

)
(19)

In order to determine the unknown generalized ve-
locities after impact, u+, one has to calculate first the
corresponding impulses ΛN . With the aid of Newton’s
impact law (17) it follows that

ΛN =
(

ΛN1

ΛN2

)

= −γ −
N

(r1 − r2)2

×

⎛

⎜
⎜
⎜
⎜
⎝

Im(εN1 − εN2)

+m(r2
2 + r2

2 εN1 − r1r2 − r1r2εN2)

Im(−εN1 + εN2)

+m(−r1r2 − r1r2εN1 + r2
1 + r2

1 εN2)

⎞

⎟
⎟
⎟
⎟
⎠

(20)

Assuming the coefficients of restitution in the two im-
pacts εN1, εN2 are the same εN1 = εN2 = εN (20)
yields

⎛

⎝

ΛN1
mγ −

N

ΛN2
mγ −

N

⎞

⎠ = −(1 + εN)

(− r2
r1−r2
r1

r1−r2

)

= − (1 + εN)

2

(
1 − sina cosa

W/L

1 + sina cosa
W/L

)

(21)

Using (4) the unknown generalized velocities after
impact u+ are calculated as

u+ = u− − M−1WN G−1
N (E + ¯̄εN)γ−

︸ ︷︷ ︸
−ΛN

⇒
⎛

⎜
⎝

u+
x

u+
y

u+
θ

⎞

⎟
⎠ =

⎛

⎜
⎝

u−
x

u−
y

0

⎞

⎟
⎠

+
⎛

⎜
⎝

− ca
m

ΛN1 − ca
m

ΛN2

sa
m

ΛN1 + sa
m

ΛN2
r1
Im

ΛN1 + r2
Im

ΛN2

⎞

⎟
⎠

(22)

From (22), due to (21), it follows that the post-impact
angular velocity is zero, u+

θ = 0.

Impulses ΛN1 and ΛN2 are given by (21) as a
function of the geometry (α,L,W), the coefficient of
restitution in the normal direction εN , and the trans-
lational mass m. However, (21) are incomplete with-
out the physical inequality constraint ΛN ≥ 0, which
accounts for the unilateral nature of impact. Unlike
single impact (18), in multi-impacts the satisfaction
of the inequality constraint demands special atten-
tion [21].

Indeed, taking into account that by definition:
m(1 + εN) > 0, and that in order for contact to oc-
cur the relative velocity must be negative γ −

N ≤ 0 (ap-
proach process), the sign of impulse depends solely
on the (proposed) dimensionless criterion, η0, which
relates the ratio of the two sides in plan (L,W) with
the skew angle, α, as follows:

η0 = sin 2a

2(W/L)
(23)

For η0 > 1, impulse at the acute corner according to
(21) is negative ΛN1 < 0, which lacks physical inter-
pretation. On the contrary, impulse at the obtuse corner
is always positive, ΛN2 > 0 (21).

As mentioned previously, no angular velocity is de-
veloped after the examined oblique impact (Fig. 5,
right) and thus rotation remains zero, u+

θ = 0, as as-
sumed before impact. This not so intuitive conclu-
sion though, is valid only when constraint ΛN ≥ 0
is satisfied or equivalently when η0 < 1 (Fig. 6, top).
If η0 > 1 (Fig. 6, bottom), contact at the acute cor-
ner must be ignored (since ΛN1 < 0) and (22) of the
multi-impact have to be replaced by (18), assuming
single impact solely at the obtuse corner. In summary,
the generalized angular velocity, u+

θ , after double im-
pact is given by:

u+
θ =

⎧
⎨

⎩

γ −
N

r2

1+εN

(
ρ
r2

)2+1
, if η0 = sin 2a

2(W/L)
> 1

0, if η0 = sin 2a
2(W/L)

< 1
(24)

Equations (24) unveil two distinct response pat-
terns of a planar skew body after double oblique im-
pact. When η0 < 1, or equivalently W/ cosα > L sinα

(Fig. 6, top), the angular momentums of the two im-
pulses ΛN1 and ΛN2 with respect to the center of
mass (C.M.) are in different directions and cancel
out, as a consequence no angular velocity is devel-
oped (24). On the contrary, when η0 > 1, subsequently
W/ cosα < L sinα (Fig. 6, bottom) the angular mo-

 Author's personal copy 



582 E.G. Dimitrakopoulos

Fig. 6 Geometrical
interpretation of the
rotational mechanism of
skew bridges (frictionless
impact). Top: no rotation is
developed after double
impact. Bottom:
double-impact results in
rotation

Fig. 7 Contours of the
dimensionless skew
criterion η0 values in the
plane: width/length
(W/L)–skew angle (α)
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Fig. 8 Double backward
slip (top), double forward
slip (bottom)

mentums of the two impulses ΛN1 and ΛN2 are in
the same direction, the impulse at the acute corner
should then be neglected since according to (21) it
changes sign (ΛN1 < 0) and angular velocity is de-
veloped (24). This behavior of a skew rigid body after
double oblique impact is reminiscent of the behavior
of the double impact of a rod [21].

To date, these two distinct response patterns of
deck-abutment collisions of skew bridges were not
known. Furthermore, (24) reveal that the tendency of
such bridges towards rotation (and most importantly
unseating) is not a factor of the skew angle (α) alone,
as considered in empirical vulnerability methodolo-
gies e.g. [7] but rather of the overall geometry of the
body in-plan (criterion η0 (23)). Figure 7 plots con-
tours of the dimensionless criterion η0 on the plane:
width and length ratio (W/L) vs. skew angle (α).
Every point on this plane shapes the form of a skew
bridge segment in plan. For example, small α and
W/L ratio around unity correspond to a square body
(Fig. 7, top left, η0 ≈ 0.2) while large α and low W/L

ratios to a bridge like the one at the bottom right of
Fig. 7 (η0 ≈ 2.0). Figure 7 also shows that a bridge
with a smaller skew angle (α) is feasible to yield a
greater dimensionless skew value (η0) than one with a
larger skew angle.

5 Frictional impact

A more realistic description of the oblique impact re-
sponse of skew bridges is obtained when friction is
taken into account. However, the ad hoc method, of
checking the sign of the impulse a posteriori used
in the previous section, is inappropriate for compli-
cated (such as multi-frictional) impact configurations
[16, 21]. Instead, a more effective method is to formu-
late the impact problem taking into account the uni-
lateral character of contact from the beginning, for in-
stance by means of a Linear Complementarity Prob-
lem (LCP, (11) and (12)).

The LCP (11) with the complementarity condi-
tions (12) yields a great variety of solutions. In ad-
dition to the single-impact states investigated in [16]
three multi-impact states appear: double backward slip
(Fig. 8, top), double forward slip (Fig. 8, bottom) and
double stick (Fig. 9, later on). It is reminded that in
the transversal direction a Coulomb friction model is
realized via a set-value force law; the Sgn(x) function
(Fig. 3).

5.1 Multiple frictional impact states

The discussion of frictional impact begins with dou-
ble impact. Later in the paper, it is shown that for the
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mechanical configuration considered herein, single-
impact states can be seen as a special case of the
double impact examined. Double impact occurs when
u−

θ = 0 and θ− = 0 (Fig. 5, right).
Firstly, G-matrices are calculated according to (6):

GNN =
⎛

⎝
1
m

+ r2
1

Im

1
m

+ r1r2
Im

1
m

+ r1r2
Im

1
m

+ r2
2

Im

⎞

⎠

GNT =
( r1rT

Im

r1rT
Im

r2rT
Im

r2rT
Im

)

GT T =
⎛

⎝
1
m

+ r2
T

Im

1
m

+ r2
T

Im

1
m

+ r2
T

Im

1
m

+ r2
T

Im

⎞

⎠

GT N =
( r1rT

Im

r2rT
Im

r1rT
Im

r2rT
Im

)

(25)

The inverse of matrix GNN expresses the effective
mass in the normal direction of the impact [21] and is
given by

G−1
NN = 1

(r1 − r2)2

(
Im + r2

2 m −Im − r1r2m

−Im − r2r1m Im + r2
1m

)

(26)

On the contrary, matrices GNT , GT T and GT N are
not invertible since determinants: |GNT | = |GT T | =
|GT N | = 0 are zero. This is a typical case of depen-
dent constraints which arises because the two impacts
are linearly interdependent in the transversal direc-
tion. Such overconstrained problems appear often in
multibody dynamics with multi-impacts and several
ways of treating them have been proposed in the lit-
erature [14].

5.1.1 Double backward slip (Fig. 8, top)

The complementarity conditions (12) for ΛN1 > 0,
ΛN2 > 0, ΛT 1 = +μΛN1 and ΛT 2 = +μΛN2 yield:
vN1 = 0, vN2 = 0, ΛT R1 = 2μΛN1, vT R1 = 0,
ΛT R2 = 2μΛN2 and vT R2 = 0. Thus, (9) reduces to

(GNN + GNT
¯̄μ)ΛN = −( ¯̄εN + E)γ−

N (27)

The inverse of matrix (GNN + GNT
¯̄μ) is given by

(GNN + GNT
¯̄μ)−1 = 1

(r1 − r2)2

×
(

Im + m(r2
2 + μr2rT ) −Im − m(r1r2 + μr1rT )

−Im − m(r1r2 + μr2rT ) Im + m(r2
1 + μr1rT )

)

(28)

Note that for μ = 0 (28) reduces to (19) of frictionless
collisions. The impulse vector is derived from (27) due
to (28) as:
⎛

⎝

ΛN1
mγ −

N

ΛN2
mγ −

N

⎞

⎠ = −(1 + εN)

( −r2−μrT
r1−r2

r1+μrT
r1−r2

)

(29)

Equation (10), replacing ΛN from (29), becomes

vT L = (GT N + GT T
¯̄μ)(GNN + GNT

¯̄μ)−1

× ( ¯̄εN + E)γ−
N − Eγ−

T (30)

The product (GT N + GT T
¯̄μ)(GNN + GNT

¯̄μ)−1 after
some algebra simplifies to

(GT N + GT T
¯̄μ)(GNN + GNT

¯̄μ)−1

=
(−μr2−rT

r1−r2

μr1−rT
r1−r2

−μr2−rT
r1−r2

μr1−rT
r1−r2

)

(31)

Replacing (31) in (30) shows that the transversal post-
impact velocities of the two impact points, in the case
of double backward slip, are equal:

γ +
T 1 = γ +

T 2

γ +
T 1

γ +
N

= −1 + εN

εN

μ + 1

εN

γ −
T

γ −
N

(32)

According to the Newton–Euler equations double
backward slip results in zero angular velocity, since

M(u+ − u−) = WNΛN + WT ΛT

⇒ Im(u+
θ − 0)= r1ΛN1 + r2ΛN2

+ rT (ΛT 1 + ΛT 2)

= 0 ⇒ u+
θ = 0

Double backward slip (Fig. 8, top) occurs when:
(ΛN ΛT R vT L)T ≥ 0 ⇒ (ΛN1 ΛN2 ΛT R1 ΛT R2

vT L1 vT L2)
T ≥ 0, which with the help of the LCP (11)

yield two existential conditions:

ΛN1 ≥ 0 ⇒ r2 + μrT ≤ 0 ⇒ η1 ≤ 1

where η1
.= η0

(

1 + μ

tana

)

(33)
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vT L ≥ 0 ⇒ γ −
T 1

γ −
N

≥ (1 + εN)μ and γ −
T 1 = γ −

T 2

(34)

5.1.2 Double forward slip (Fig. 8, bottom)

Following the same reasoning for forward slip
(ΛN1 > 0, ΛN2 > 0, ΛT 1 = −μΛN1 and ΛT 2 =
−μΛN2), as for double backward slip, the normal im-
pulse vector, ΛN is given by

⎛

⎝

ΛN1
mγ −

N

ΛN2
mγ −

N

⎞

⎠ = −(1 + εN)

( −r2+μrT
r1−r2

r1−μrT
r1−r2

)

(35)

Equation (10) yields:

vT R = (GT N − GT T
¯̄μ)(GNN − GNT

¯̄μ)−1

× ( ¯̄εN + E)γ−
N + Eγ−

T (36)

and after evaluating the product

(GT N − GT T
¯̄μ)(GNN − GNT

¯̄μ)−1

=
⎛

⎝

μr2+rT
r1−r2

−μr1−rT
r1−r2

μr2+rT
r1−r2

−μr1−rT
r1−r2

⎞

⎠ (37)

the post-impact velocities of the two impacts are de-
rived:

γ +
T 1 = γ +

T 2

γ +
T 1

γ +
N

= 1 + εN

εN

μ + 1

εN

γ −
T

γ −
N

(38)

Similarly to double backward slip, the post-impact an-
gular velocity is zero.

Double forward slip occurs when (ΛN ΛT L vT R)T

≥ 0, and with the help of the LCP (11) the following
existential conditions are derived:

ΛN1 ≥0 ⇒ μrT ≥ r2 ⇒ η0

(

1− μ

tana

)

≤1

ΛN2 ≥ 0 ⇒ r1 ≥μrT ⇒ η0

(
μ

tana
−1

)

≤1

⎫
⎪⎪⎬

⎪⎪⎭

⇒ |η2| ≤ 1 where η2
.= η0

(

1 − μ

tana

)

(39)

vT R ≥ 0 ⇒ γ −
T

γ −
N

≤ (1 + εN)μ and γ −
T 1 = γ −

T 2

(40)

5.1.3 Double stick

The complementarity conditions (12) for ΛN1 > 0,
ΛN2 > 0, |ΛT 1| > μΛN1 and |ΛT 2| < μΛN2 yield:
vN1 = 0, vN2 = 0, ΛT R1 > 0, ΛT R2 > 0, vT R1 = 0,
vT R2 = 0,ΛT L1 > 0, ΛT L2 > 0, vT L1 = 0, and
vT L2 = 0. Thus, (9) and (10) yield a system of cou-
pled equations that must be solved for both unknown
vectors ΛN and ΛT R simultaneously:

0 = (GNN − GNT
¯̄μ)ΛN + GNT ΛT R + ( ¯̄εN + E)γ−

N

0 = (GT N − GT T
¯̄μ)ΛN + GT T ΛT R + Eγ−

T

(41)

As mentioned previously matrices GNT ,GT T and
(GT N − GT T

¯̄μ) are not invertible, since the two im-
pacts are dependent (constraints), thus system (41) has
no unique solution. In order to derive a closed-form so-
lution for this type of impact (double stick) the prob-
lem can be reformulated.

In the case of double stick the post-impact kine-
matic state of the rigid body is fully determined by de-
finition: vN = 0 and vT = 0. This allows the determi-
nation of an equivalent single (point) impact that by-
passes the problem of overconstrained impacts. With
reference to Fig. 9 the direction vectors of the equiva-
lent impact are

wT
N = (− ca sa r∗) wT

T = ( sa ca rT )

(42)

The only unknown under determination is the lever
arm of the singe impact in the normal direction r∗.
The Newton–Euler equations for the two simulations
of impact (double and equivalent single, Fig. 9) give:

WNΛN + WT ΛT = WNΛN + WT ΛT (43)

The left-hand side of (43) is the matrix expres-
sion of impulse under the assumption of double im-
pact (Fig. 9, top), while the right-hand side the corre-
sponding scalar impulse of the equivalent single im-
pact (Fig. 9, bottom). Since the post-impact kinematic
state of the body is known by assumption, it follows
that the product M(u+ − u−) is also known. After
some algebra (43) yields:

ΛN1 + ΛN2 = ΛN

ΛT 1 + ΛT 2 = ΛT

r1ΛN1 + r2ΛN2 = r∗ΛN

(44)
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Fig. 9 Double stick,
simulated as multi-impact
(left) and single impact
(right)

The first two equations of (44) stand for the linear
momentum equivalence between the two (double and
single) impacts, while the third equation of (44), ex-
presses the equivalence of angular momentums.

The unknown lever of the single impact, in the nor-
mal direction, is given as a function of the pre-impact
velocities and the coefficient of restitution from (5)
due to (43), after some algebra, as:

r∗ = − ΛT

ΛN

rT = −1

1 + εN

γ −
T

γ −
N

rT (45)

Hence introducing condition (45) an equivalent single
impact with the examined double stick may be com-
pletely determined a priori.

In order to derive the existential conditions of dou-
ble stick, impulses ΛN1 and ΛN2 are first calculated
from (44) introducing condition (45):

ΛN1 = r∗ − r2

r1 − r2
ΛN ΛN2 = r1 − r∗

r1 − r2
ΛN (46)

Both ΛN1 and ΛN2 are positive by assumption, hence

r1 ≥ r∗ ≥ r2 (47)

Also by assumption, it holds that: |ΛT | < μΛN which
due to (45) gives

|r∗/rT | ≤ μ (48)

as well as

−μ(1 + εN) ≤ γ −
T

γ −
N

≤ μ(1 + εN) (49)

In addition to condition (49) the following existential
conditions arise from (47) with the help of (48):

{
r2 − μrT < 0
r1 + μrT > 0

⇒
{

η0(1 − μ/ tanα) < 1
η0(1 + μ/ tanα) > 1

⇒
{

η2 < 1
η1 > 1

(50)

When ΛN = 0 holds at both impact points, dou-
ble impacts lack physical interpretation. Hence, the re-
maining physically feasible combinations of the LCP
(11) treat double-impact states during which only one
of the two impact points presents a compressive im-
pulse (ΛN > 0). The comparison of the following im-
pact states with those considered in [16] reveals that
these impacts can be treated also with a similar LCP
treating single-frictional impacts.

5.1.4 Backward slip at the obtuse corner

Equations (9) and (10) due to the complementarity
conditions (12) and ΛN2 > 0,ΛN1 = 0, and ΛT 2 =
+μΛN2 yield
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⎧
⎪⎪⎨

⎪⎪⎩

ΛN2
mγ −

N

= − (1+εN )

1+ r2
2 +μr2rT

ρ2

γ +
N1

γ −
N

= 1 + (1 + εN)
ρ2+r1r2+μr1rT
ρ2+r2

2 +μr2rT

(51)

The pertinent existential conditions are
{

ΛN2 ≥ 0 ⇒ ρ2 + r2
2 + μr2rT ≥ 0

vN1 ≥ 0 ⇒ r2 + μrT ≤ 0 ⇒ η1 ≤ 1
and

vT L2 ≥ 0 ⇒ γ −
T

γ −
N

≥ (1 + εN)
μ(ρ2 + r2

T ) + r2rT

ρ2 + r2
2 + μr2rT

(52)

5.1.5 Backward slip at the acute corner

In the case of backward slip at the acute corner
(ΛN1 > 0,ΛN2 = 0, and ΛT 1 = +μΛN1) the exis-
tential conditions are derived, following the same rea-
soning, as:
{

ΛN1 ≥ 0 ⇒ μr1rT + r2
1 + ρ2 ≥ 0

vN2 ≥ 0 ⇒ (r1 + μrT )(r1 − r2) ≤ 0
(53)

It is interesting to note that condition vN2 ≥ 0 re-
sults in a contradiction, since both r1 − r2 > 0 and
r1 +μrT > 0 are positive. Hence, single backward slip
cannot take place at the acute corner of a skew rigid
body, a conclusion not so intuitive.

5.1.6 Forward slip at the obtuse corner

Similarly to backward slip at the obtuse corner, for-
ward slip at the obtuse corner (ΛN2 > 0, ΛN1 = 0,
and ΛT 2 = −μΛN2) results in:
⎧
⎪⎪⎨

⎪⎪⎩

ΛN2
mγ −

N

= − (1+εN )

1+ r2
2 −μr2rT

ρ2

γ +
N1

γ −
N

= 1 − (1 + εN)
ρ2+r1r2−μr1rT
ρ2+r2

2 −μr2rT

(54)

with the pertinent existential conditions given by
{

vN1 ≥ 0 ⇒ r2 − μrT ≥ 0 ⇒ η1 ≤ 1

ΛN2 ≥ 0 ⇒ ρ2 + r2
2 − μr2rT ≥ 0

and

vT R2 ≥ 0 ⇒ γ −
T

γ −
N

≤ r2rT − μ(r2
T + ρ2)

ρ2 + r2
2 − μr2rT

(1 + εN)

(55)

5.1.7 Forward slip at the acute corner

Forward slip at the acute corner is described by (54)
and (55) substituting lever r2 with lever r1 (with the
exception of product r1r2 which remains as it is).

5.1.8 Stick at the obtuse corner

Impulses in the normal and the transversal direction
for stick at the obtuse corner (ΛN2 > 0, ΛN1 = 0, and
|ΛT 2| < μΛN2) are calculated from (9) and (10) with
the help of the complementarity conditions (12) as:

ΛN2

mγ −
N

=
−(ρ2 + r2

T )(1 + εN) + r2rT (1 + εT )
γ −
T

γ −
N

ρ2 + r2
2 + r2

T

ΛT 2

mγ −
N

=
r2rT (1 + εN) − (ρ2 + r2

2 )(1 + εT )
γ −
T

γ −
N

ρ2 + r2
2 + r2

T

(56)

the existential conditions for stick at the obtuse corner
are

γ −
T

γ −
N

<
ρ2 + r2

T

r2rT

1 + εN

1 + εT

(
ρ2 + r2

2 − μr2rT
)γ −

T

γ −
N

>
[
r2rT − μ

(
ρ2 + r2

T

)]

× 1 + εN

1 + εT

(
ρ2 + r2

2 + μr2rT
)γ −

T

γ −
N

<
[
r2rT + μ

(
ρ2 + r2

T

)]

× 1 + εN

1 + εT

(57)

5.1.9 Stick at the acute corner

For (single) stick at the acute corner (56) and (57) hold
where in lieu of lever r2, lever r1 is used.

The combinations of the LCP (11) with transver-
sal impulses of opposite sign (at the two impacts) lack
physical interpretation. If for instance ΛT 1 = +μΛN1

and ΛT 2 = −μΛN2 the complementarity conditions
(12) yield: vT L1 ≥ 0 and vT R2 ≥ 0.

5.2 Synopsis

The synopsis of all physically feasible combinations
of the LCP (11) shows that the response of the exam-
ined oblique frictional multi-impact is mainly deter-
mined by two criteria: the first criterion is the transver-
sal and the normal velocity ratio γ −

T /γ −
N which deter-

mines whether the double impact is forward/backward
slip or stick. The second criterion is the dimensionless
geometrical ratio (η0) proposed for frictionless im-
pact or the pertinent ratios of frictional impact (η1,2),
given by:
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Fig. 10 Critical curves
η0 = 1, η1 = 1, η2 = ±1 in
the plane: width/length
(W/L)–skew angle (α), for
friction coefficient μ = 0.5
(top) and μ = 1.0 (bottom)

η1,2 = η0

(

1 ± μ

tana

)

= sin 2a

2(W/L)

(

1 ± μ

tana

)

(58)

where sign (+) holds for backward slip (η1) and
sign (−) for forward slip (η2).

In Fig. 10 the critical curves for both backward
(η1 = 1) and forward slip (η2 = ±1) are illustrated
for a given coefficient of friction μ = 0.5 (top) and
μ = 1.0 (bottom). Points B1, B2 and B3 correspond to
skew bridges with increasing skew ratios η0 (see also
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Fig. 11 The double impact
of three bridge decks (B1,
B2, B3) with increasing
dimensionless skew ratios
η0 for two coefficients of
friction. Top: backward slip,
middle and bottom: forward
slip. Dashed lines indicate a
feasible post-impact
position

Fig. 11). The proposed criteria η1,2 (58) distinguish
the double-impact response of a skew body into two
distinct types: for η1 ≤ 1 (backward slip) or |η2| ≤ 1
(forward slip), double frictional impact results in zero
angular velocity and hence zero rotation of the body,
otherwise double impact produces angular velocity
and hence rotation. Subsequently, the critical curves
(η1 = 1, η2 = ±1) of Fig. 10 (and Fig. 12 later on) di-
vide the plane (W/L, α) of skew bodies, depending on
the assumed coefficient of friction (μ), into two areas:
the one above the pertinent curves wherein η1 < 1 (or
−1 < η2 < 1) holds and the area below the pertinent
curves wherein η1 > 1 (or η2 > 1, η2 < −1) holds.
Note that double stick is feasible in the gray areas of
Fig. 10 provided the transversal–normal velocity ratio
γ −
T /γ −

N is low enough: |γ −
T /γ −

N | ≤ (1 + εN)μ.

Figure 10 illustrates that for μ = 0 bridges with
modest and high dimensionless skew ratios η0 (e.g.
points B2 and B3 accordingly) rotate after backward
slip. On the contrary bridges with small dimension-
less skew ratios η0 (e.g. point B1) do not rotate af-
ter backward slip. As μ increases (Fig. 10 bottom,
μ = 1.0) so does the tendency of skew bridges to ro-
tate since all three points (B1, B2 and B3) are be-
low the curve n1 = 1 which means that bridges of a
wide range of dimensionless skew ratios η0 rotate, af-
ter double backward slip, in such a way that the skew
angle increases in accordance with the relevant litera-
ture [5]. Figure 10 also shows that after double forward
slip only bridges with high η0 (e.g. B3) rotate, pro-
vided the coefficient of friction μ is not high, result-
ing in increasing the skew angle (n2 > 1). A counter-
intuitive rotation which results in decreasing the skew
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Fig. 12 Critical curves of
the proposed criteria η1,2,
in the plane width/length
(W/L)–skew angle (α), for
different coefficients of
friction μ. Top: double
backward slip, bottom:
double forward slip

angle, appears after forward slip for small and modest
dimensionless skew ratios η0 (e.g. points B1 and B2)
when the coefficients of friction is high (n2 > −1, see
also Fig. 11 middle).

Figure 11 illustrates the geometry of the rotational
mechanism associated with double frictional impact,
which is similar to the frictionless case. When the an-

gular momentums of the resultant impulses are in dif-
ferent directions with respect to the center of mass
(C.M.) the angular momentums cancel out and no ro-
tation is developed. On the contrary, when the angular
momentums are in the same direction angular velocity
and hence rotation is developed. The white arrows in
Fig. 11 present impacts that must be ignored since they
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violate the inequality constraint ΛN ≥ 0. As Fig. 11
unveils, the areas wherein η1 > 1 and η2 > 1 hold,
correspond to rotation, after double backward and for-
ward slip (impact) accordingly, in the direction of in-
creasing the skew angle. This trend is in agreement
with the relevant literature [5]. On the contrary, the
area wherein η2 < −1 holds corresponds to rotation,
after double forward slip, in the (opposite) direction of
decreasing the skew angle. This counter-intuitive rota-
tion is not mentioned in earthquake engineering litera-
ture.

Figure 12 presents the critical curves of the pro-
posed criteria for backward slip (η1 = 1, Fig. 12, top),
forward slip (η2 = ±1, Fig. 12, bottom) and differ-
ent coefficients of friction μ. The frictionless case an-
alyzed in the previous section is captured with the
μ = 0 curve (η0 = 1). Figure 12 shows that most skew
bodies tend to rotate after backward slip and not af-
ter forward slip since the area wherein η1 > 1 holds
is broader than that of η2 > 1 or η2 < −1. As μ in-
creases, the tendency towards rotation in the direc-
tion of increasing the skew angle accentuates after
backward slip (η1 > 1) but diminishes after forward
slip (η2 > 1). On the other hand, as μ increases the
counter-intuitive rotation, in the direction of decreas-
ing the skew angle (η2 < −1), becomes feasible after
forward slip. This counter-intuitive behavior is more
pronounced for small dimensionless skew ratios η0. It
is noted though, that for a specific skew bridge (a spe-
cific point in the W/L–α plane) and a given coefficient
of restitution, only one of the directions of rotation is
feasible to occur after forward slip. In other words the
two trends do not coexist.

5.3 Single-frictional impact

Single impacts occur when contact takes place at one
corner of the rigid body (Fig. 5, left), i.e. when θ− 
= 0
and/or u−

θ 
= 0. Within the context of this paper how-
ever, single-frictional impacts can be considered as a
special case of the double impact analyzed in the pre-
vious section. Each double impact for which ΛN = 0
holds at one of the impact points, is in essence a sin-
gle impact at the other closed impact point (ΛN > 0).
Hence, using the appropriate lever arms either of the
acute (r̃N1, r̃T 1) or of the obtuse corner (r̃N2, r̃T 2) all
physically feasible single impacts can be described
also with the LCP (11). For example, backward slip at
the obtuse corner is described by (51) and existential

conditions (52), where instead of r2 and rT , r̃N2 and
r̃T 2 are used. This can be shown also with the compar-
ison of (51), (52), (53), (54), (55), (56), and (57) with
the pertinent relations of Payr and Glocker [16] de-
rived from a similar LCP which treats single-frictional
impacts.

Figures 13, 14 and 15 illustrate the existential
conditions of the three different single-frictional-
impact states (forward slip ΛT = −μΛN , backward
slip ΛT = +μΛN and stick |ΛT | < μΛN) in the
plane: pre-impact transversal and normal velocity ra-
tio (γ −

T /γ −
N )—pre-impact rotation (θ−). Figure 13

concerns straight bridges i.e. with zero skew angle
α = 0. Due to the symmetry of the system the re-
sponse is also symmetrical with respect to rotation.
As expected, for frictionless collisions no stick (gray
area of Figs. 13, 14 and 15) is observed, whereas as
coefficient of friction μ increases the stick area be-
comes broader. Not so intuitive though, is that the
same trend appears as the coefficient of restitution in-
creases.

Figures 14 and 15 present the existential condi-
tions of the three distinct (single-) impact states, for
different skew angles α. For positive pre-impact ro-
tations θ− > 0 impact occurs at the obtuse corner,
while for negative rotations θ− < 0 impact occurs at
the acute corner. In bridges the range of rotation val-
ues with practical significance is of the order of a few
degrees. Within that range, the stick area is systemat-
ically broader for (small) positive rotations than it is
for (small) negative rotations. This observation is in
agreement with the qualitative remarks, found in the
literature, that skew bridges tend to jam at the obtuse
corner [5]. As the skew angle (α) increases the system
becomes less symmetrical and similarly less symmet-
rical becomes its response with respect to (pre-impact)
rotations θ−. It is also interesting to note that the ten-
dency to stick becomes more pronounced as the skew
angle α becomes smaller.

In Fig. 14 (bottom right) for skew angle a = 30◦,
coefficient of friction μ = 1.0 and pre-impact rota-
tions θ < −20◦ only two impact states are feasible,
backward slip and stick (at the acute corner). In other
words, the third impact state, in this case forward slip,
is not feasible. This phenomenon is due to the Painlevé
paradox [14] which emerges when a critical maxi-
mal coefficient of friction is exceeded. However, a de-
tailed discussion on the Painlevé paradox is beyond the
scope of this paper which is oriented towards results
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Fig. 13 The three distinct single-frictional impact states in the (γ −
T /γ −

N − θ−) plane for straight bridges (zero skew angle α = 0).
Coefficient of restitution εN = 1.0 (left), 0.5 (right), coefficient of friction μ = 0 (top), 0.5 (middle) and 1.0 (bottom)

applicable to bridges, where (pre-impact) rotations re-
main within the range of a few degrees.

6 Conclusions

The aim of the present paper is to bring forward
the physical mechanism behind deck-abutment colli-
sions in skew bridges. The relevant literature lacks a

thorough theoretical study and is mostly confined to

empirical descriptions of the phenomenon. Building

on the work of other researchers, the study adopts a

fully non-smooth rigid body approach and examines

in depth the impact response of a planar skew (rigid)

body against an inelastic half-space, which encapsu-

lates a lot of the ‘physics’ involved in deck-abutment

collisions.
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Fig. 14 The three distinct single-frictional impact states in the (γ −
T /γ −

N −θ−) plane for coefficient of restitution εN = 0.5. Skew angle
α = 15◦ (left), 30◦ (right), coefficient of friction μ = 0 (top), 0.5 (middle) and 1.0 (bottom)

The study unveils the rotational mechanism associ-
ated with (double) oblique impact and shows that the
tendency of skew bridges to rotate depends on the to-
tal geometry of the body in plan, not on the skew an-
gle alone, in contrast to what is commonly considered
in empirical vulnerability methodologies for bridges.
Double oblique impact, either frictionless or frictional,
triggers rotation when the resultant impulses of the
two impact points produce angular momentums in the

same direction with respect to the center of mass. The
study also concludes that skew bridges prefer to rotate
in such a way that the skew angle increases, in agree-
ment with the relevant literature. However, a counter-
intuitive rotation in the opposite direction of decreas-
ing the skew angle, which is caused by friction, is also
unveiled.

Frictional oblique impact is treated via a linear
complementarity formulation, which includes single
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Fig. 15 The three distinct single-frictional impact states in the γ −
T /γ −

N , θ− plane for coefficient of restitution εN = 0.5. Skew angle
α = 45◦ (left), 60◦ (right), coefficient of friction μ = 0 (top), 0.5 (middle) and 1.0 (bottom)

impacts as a special case of the examined double

oblique impact. The physically feasible impact states

are determined, the pertinent existential conditions are

derived and specific criteria are proposed that deter-

mine whether double impact triggers rotation. The

present analysis finally examines the effect of the im-

pact parameters (coefficient of restitution in the nor-

mal direction and coefficient of friction in the transver-

sal direction) on the response and illustrates the com-
plexity of the examined oblique impact.
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