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SUMMARY

This paper assesses the seismic fragility of single degree of freedom rocking structures within a proba-
bilistic framework. The focus is on slender rigid structures that exhibit negative stiffness during rocking.
The analysis considers ground motions with near-fault characteristics, either solely coherent pulses or syn-
thetic ground motions that include, in addition, a stochastic high-frequency component. The study offers
normalized fragility curves that estimate the overturning tendency, as well as the peak response rotation
of a rocking structure. It shows that the use of bivariate intensity measures (IM s) can lead to superior
fragility curves compared with conventional univariate IM s. Regardless, the study advocates the use of
dimensionless–orientationless IM s that offer an approximately ‘universal’ description of rocking behav-
ior/fragility, a normalized description almost indifferent to the amplitude and the predominant frequency
of the excitation or the size and the slenderness of the rocking structure. Importantly, the analysis unveils
hidden order in rocking response. There exists a critical peak ground acceleration, below and above which,
peak rocking response scales differently. In particular, when the structure does not overturn, the peak rota-
tion follows approximately a biplanar pattern with respect to the intensity and the predominant frequency
of the excitation. Finally, the analysis verifies that rocking overturning depends primarily on the velocity
characteristics of the ground motion. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper derives from a broader study [1–3] on the dynamics of rocking structures, which aims to
examine the potential merits of rocking behavior as a seismic isolation technique for contemporary
structures. Rocking isolation relies on utilizing the rotational inertia of (part of) the structure through
purposely activated dynamic motion (primarily rigid body rotations). This is a radically different con-
cept than conventional seismic design that regards dynamic motion as an ‘unpleasant’ by-product of
structural deformation. Rocking behavior is one of the reasons many ancient structures survived millen-
nia in earthquake-prone regions [4,5]. Still, it was only in the 1970s that pioneer engineers rediscovered
the value of rocking isolation for contemporary structures [6, 7], and currently, it is proliferating for
example in [8] and references therein.

The present study focuses on slender rigid structures that exhibit pure rocking behavior (without
sliding) during seismic excitation. The dynamics of such rocking structures differs fundamentally from
the dynamics of (conventional) deforming structures. The comparison of the two archetypal systems
is as follows: the rocking block and the elastic oscillator [9, 10] encapsulate many of the distinct
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qualitative differences. A peculiar characteristic of rocking dynamics is the negative stiffness that pre-
vents the structure from resonance under constant frequency (e.g., harmonic) excitation [11]. However,
the negative stiffness renders also rocking structures inherently unstable and very sensitive to the char-
acteristics of ground motion. The boundaries between the safe and overturning areas of the control
plane (i.e., ‘overturning plots’) under harmonic loading exemplify this sensitivity (e.g., [12–14]). Fur-
ther, rocking structures are particularly vulnerable to coherent pulse-type ground motions [15]. Follow-
ing the seminal work of Housner [15], several publications focused on the prediction of pure-rocking
overturning under pulse-type excitations, shedding light on the transient rocking dynamics via deter-
ministic methods [16, 17]. Building on their work, the studies of Dimitrakopoulos [2] and Voyagaki
et al. [18, 19] offered analytical closed-form solutions for mathematical (pulse-type) ground motion
excitations. Still, the presence of multiple impulses, coexisting in the ground motion, can either amplify
or deamplify the rocking response perplexing further the problem [10, 11]. More recently, DeJong and
Dimitrakopoulos [1] offered a methodology to derive an exact or approximate dynamic equivalency
between a variety of rocking structures and the archetypal rocking block.

Even though it is hard to overstate the significance of deterministic methods in elucidating rock-
ing behavior, the frail rocking dynamics remains elusive and difficult to predict. More so, if one
considers the inherent uncertainty related to the specific characteristics of future ground motions.
Interestingly, in his 1963 paper, Housner [15] tackled the problem also from a stochastic perspective,
estimating the probability of overturning via an energy balance equation (see also [20]). Almost two
decades later, researchers were confronting typical traits of nonlinear dynamics in rocking response
(e.g., [21]); small changes in size, slenderness, or ground motion could cause drastic differentiation of
the response. This prompted the prediction of rocking overturning via probabilistic methods: Spanos
and Koh [22] deployed a stochastic linearization technique, Cai et al. [23] assessed the reliability of
a rigid block against toppling under nonstationary and nonwhite (random process) base excitations,
and Shao and Tung [24] estimated the overturning probability of a rigid body subjected to real earth-
quake records. Meanwhile, in the field of earthquake engineering, as the idea of assessing seismic
performance via probabilistic methods matured [25], it led to representing the conditional probability
of failure (i.e., fragility) of a structure under uncertain input, via pertinent fragility curves (e.g., [26]).
Focusing on rocking, Kafle et al. [27] developed overturning fragility curves, for unrestrained blocks,
based on physical and numerical experiments, while Roh and Cimellaro [28] and Deng et al. [29]
offered fragility curves for frames with rocking columns ([30]) and bridges with rocking foundations,
respectively.

Yet, with a view to use rocking in practical engineering design, a question that persists is that of
the seismic reliability of rocking behavior. Motivated by the growing interest in rocking, this study
acknowledges the need to tackle the non-predictability of the rocking response probabilistically. To
this end, it integrates two different components: (i) a ‘universal’ description of rocking response from
the work in [2] and (ii) a probabilistic framework, borrowed primarily from two recent studies on
rocking structures: Psycharis et al. [31] and Acikgoz and DeJong [10]. The particular goal of the work
reported herein is to assess the seismic reliability of (negative stiffness) rocking structures to near-fault
excitations. In this context, the study characterizes, for the first time, the different sensitivity of rocking
response to excitations with different amplitude and/or frequency content. In the process, it discusses
the effect of the high-frequency component on rocking behavior and contributes towards improved,
specialized intensity measures (IM s) for rocking.

2. PROBABILISTIC SEISMIC DEMAND ANALYSIS

2.1. Stochastic model for near-fault ground motions

There are two main choices when selecting ground motions to assess the seismic reliability of a struc-
ture: the use of either natural/historic records (e.g., [10]) or synthetic ground motions (e.g., [31]).
Because the available natural records with coherent pulses are limited, we employ a probabilistic
approach [32, 33] and generate synthetic ground motions. The premise of the adopted methodology
is that the low-frequency (long period) and high-frequency components of the ground motion are
modeled independently. The long-period component is simulated as a coherent wavelet (Section 2.1.1),
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whereas the high-frequency component is constructed according to the stochastic method of Boore
[34] (Section 2.1.2). In a subsequent stage (Section 2.1.3), the two components are combined to
yield a synthetic ground motion (henceforth combined synthetic ground motion (CSGM)) acceleration
time history.

For economy of space, we keep the presentation of the method (Section 2.1) short, as it is described
in detail in [32, 33] and references therein.

2.1.1. Low-frequency (coherent) pulse. The well-established Mavroeidis and Papageorgiou (M&P)
[35] wavelet simulates the coherent long-period component of the CSGM. Its velocity time-history
expression is as follows:
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where A, !p , vp , �p , and t0 describe the velocity amplitude of the envelope of the pulse, the angular
frequency, the phase angle, the oscillatory character (i.e., number of half cycles), and the time shift to
specify the epoch of the envelopes peak, respectively. Tp .D 2�=!p/ is the prevailing period of the
pulse. Note that Vp is not in general equal to the envelop amplitude A, but one can be calculated from
the other if the phase angle vp is known.

For every earthquake moment magnitude Mw and epicentral distance from the fault Re , the mean
value of the velocity amplitude Vp in centimeters/second and the corresponding mean value of the
period Tp in s are obtained from [36]:

log
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w � 0:10 log
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and

log
�
Tp
�
D �2:87C 0:47Mw (3)

where log denotes the base 10 logarithm and Equation (2) holds for Mw 6 7:0; for higher values
(Mw > 7:0), Mw is taken as 7.0 [31].

The magnitude Mw ranges from 5.5 to 7.5 with a step of 0.5 (i.e., five values), and the epi-
central distance Re varies from 5 to 20 km with a step of 2.5 km (i.e., seven values) [31].
For each of the 35 Mw � Re scenarios, the Latin hypercube sampling [37] procedure gener-
ates 100 samples of the (random variables) Vp , Tp , vp , and �p . The pertinent M&P pulses are
then constructed with Equation (1). We assume that the logarithms of Vp and Tp follow a nor-
mal distribution with standard deviation equal to 0.16 and 0.18, respectively [31], and that �p
and vp follow also a normal distribution with mean values 1.93 and 1.83 and corresponding
standard deviations 0.47 and 0.98, accordingly [38]. The distribution of �p is left truncated
to 1 [31].

2.1.2. High- frequency (stochastic) component. To model the high-frequency (>0:1–0:2 Hz) com-
ponent (henceforth HFC) of the excitations, we adopt the point source stochastic method [34]. The
method uses a parametric description of the ground motion’s radiation spectrum, which is a product of
quantities that consider the effect of source, path, site, and instrument (or type) of motion. The dura-
tion of the ground motion is incorporated through an envelope function. Both the radiation spectrum
and the duration of the ground motion depend on Mw and Re . The particular parameters used herein
are taken from the Atkinson and Silva [39] study.

2.1.3. Combined synthetic ground motions. The superposition of the previous two components (the
coherent M&P pulse of Section 2.1.1 and the stochastic HFC of Section 2.1.2) constitutes the CSGM.
The distinct steps of the superposition procedure are described in detail in [31–33]. Overall, the model
parameters consist of the seismological parameters Mw and Re , the additional parameters for the
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Figure 1. Sample of a combined synthetic ground motion (CSGM): high-frequency component (first col-
umn), long-period pulse (second column). Acceleration time history (first row) and velocity time history

(second row).

Figure 2. Examined rocking structures: the simple rocking block (left) and the rocking frame (right).

velocity pulse (Vp; Tp; vp; �p), and the white noise sequence [32, 33]. Figure 1 illustrates the two
components, as well as the final (sample) CSGM. All simulations for Section 2.1 are performed using
MATLAB [37].

2.2. Structural/seismic response analysis

2.2.1. Equations of motion. This section summarizes the equations of pure rocking motion: the
rigid body rotation about alternate pivoting points (O and O’ in Figure 2). Figure 2 presents
two single degree of freedom rocking structures: the rocking block (left) and the rocking
frame (right) subjected to a horizontal ground motion with acceleration time history Rug.t/. The
equations of motion describing the pure rocking behavior of these two structures (Figure 2) are
identical [1, 40]:

R� D �p2
�

sin Œ˛sgn .�/ � ��C
Rug

g
cos Œ˛sgn .�/ � ��

�
(4)

where sgn./ is the (standard) sign function and p is the rocking frequency parameter. Figure 2 gives
the frequency parameter of a rectangular block p D pb and of a rocking frame p D pf [40], where �
is the beam-to-columns mass ratio, Ro is the semi-diagonal, and ˛ is the slenderness angle. If sliding
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is restricted, a sufficiently slender block/frame uplifts and commences rocking (Figure 2) once the
ground acceleration exceeds a minimum magnitude:

Rug;min D ag;min D g tan .˛/ (5)

where g is the acceleration of gravity.
When the structure returns to its initial position (� D 0), impact takes place, the pivot point changes,

and the rotation switches sign. A simple way to treat impact is with a coefficient of restitution �, which
is taken as the ratio of the pre-impact ( P��) and post-impact ( P�C) angular velocities:

P�C D � P�� (6)

The value of the coefficient of restitution is application and material dependent (e.g., [1, 2] and
references therein) and, therefore, is considered as an additional, independent, governing parameter
of the rocking problem. The results of this study are derived for a coefficient of restitution equal
to � D 0:92. The rocking response is determined numerically solving the nonlinear equations of
motion ((4), (5), and (6)) in MATLAB [37].

2.2.2. Engineering demand parameter and limit states (LS). For the purposes of the subsequent
fragility analysis (Section 2.3), we need appropriate engineering demand parameters (EDP s) and
IM s. According to the assumptions of the present analysis, the former is rather straightforward,
because when the rocking structure does not overturn, it eventually returns to its original con-
figuration without permanent deformation or damage. Hence, in accordance with Equation (10)
(later on), we adopt as EDP the absolute peak rocking rotation j�maxj scaled with respect to the
slenderness ˛:

EDP D
j�maxj

˛
(7)

The physical meaning of the dimensionless EDP of Equation (7) is clear: Values larger than
zero imply that the structure commences rocking, whereas high values (e.g., EDP > 1:5) indi-
cate overturning due to rocking. Accordingly, two pertinent performance levels (Table I) assess the
vulnerability of a rocking structure (block/frame): LS1 marks the initiation of rocking, and LS3
corresponds to overturning due to rocking. In addition, an intermediate limit state LS2 (Table I)
indicates observable rocking during seismic response. The threshold value of LS2 is based on engi-
neering judgment to express the level of marginal/limited rocking action that is usually targeted in
rocking applications. Such limited rocking action, an order of magnitude smaller than the slender-
ness, seems as a promising balance of the benefits of rocking isolation, without substantial danger
of overturning. Table I lists the pertinent EDP values and the qualitative description for each
capacity LS.

Figures 3 and 4 plot the EDP values (j�mj =˛) of all nonlinear dynamic response analyses (3500
per structure) versus the peak ground velocity PGV – or Vp in the case of pure pulse ground motions
– and the prevailing period Tp of the pulse. Figure 3 concerns a rocking bridge frame/bent [40], with
frequency parameter p D pf D 1:0 rad/s and slenderness ˛ D 0:149 rad, and Figure 4 a rock-
ing electrical equipment (e.g., [17, 41, 42]) with p D 2:5 rad/s and ˛ D 0:20 rad. Both structures
are subjected to the same two suites of ground motions: One is composed of M&P pulses, and one
of CSGMs.

Table I. Proposed performance criteria for rocking behavior.

EDP .j�max j=˛/ Capacity limit states Description

LS1 0.00 Rocking initiation Uplifting
LS2 0.10 Limited rocking Potential minor and local damage due to contact
LS3 !1 Rocking overturning Collapse

EDP, engineering demand parameter; LS, limit states.
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Figure 3. Seismic response analyses of a rocking frame with p D 1:0 rad/s and ˛ D 0:15 rad.

Figure 4. Seismic response analyses of a rocking electrical equipment with p D 2:5 rad/s and ˛ D 0:20 rad.

Figures 3 and 4 divide the results into three groups: (i) The ‘non-rocking’ simulations (crosses),
when the peak ground acceleration is less than the minimum acceleration that initiates rocking
(Equation (5)) and hence the structure remains at rest. (ii) The ‘safe-rocking’ simulations (hollow
circles), when the structure commences rocking and does not overturn/topple, and (iii) the ‘rocking-
overturning’ simulations (solid circles). Recall that a rocking structure becomes statically unstable
after EDP D j�maxj=˛ � 1:0, because the highly nonlinear nature of rocking dynamics overturning
does not necessarily occur when EDP � 1:0. On the contrary, a rocking structure might exhibit sig-
nificantly higher rotations j�maxj than ˛ without overturning [3], a behavior counter to the common
quasi-static viewpoint of seismic response. Overturning occurs, when the system becomes dynamically
unstable, in which case the response tends to numerically infinite values. Thus, the threshold of LS3
does not correspond to a particular rotation value (e.g., EDP D 1:5), but rather at EDP !1.

Figure 3 bottom panel (Figure 4 right) presents the response when the excitation contains the HFC
as described in Section 2.1.3 (CSGM), while Figure 3 top panel (Figure 4, left) when it does not; in
which case, the ground motion is a pure M&P pulse as in Section 2.1.1. The low-frequency coherent
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(M&P) pulses are identical for both rows of Figure 3 (both columns of Figure 4). Thus, Figures 3 and
4 verify the sensitivity of rocking structures to the characteristics of the ground motion (attributed to
their negative stiffness) and bring forward the influence of the stochastic HFC in the excitation. Note
the apparent straight line on the Vp �Tp plane that separates the ‘non-rocking’ from the rocking simu-
lations in Figure 3 (top left). The slope of this separating limit line corresponds to the minimum ground
acceleration (Equation (5)) that triggers (uplifting and) rocking. However, when the stochastic HFC is
present in the excitation, this limit line vanishes (Figure 3, bottom left, and Figure 4, right), the number
of ‘non-rocking’ simulations is drastically reduced, and rocking response becomes significantly more
probable. This is because of the numerous CSGMs for which the presence of the HFC triggers rocking,
whereas the (low acceleration M&P) pulse alone would not. Consequently, this introduces observable
noise in the results (Figure 3, bottom right), and the response becomes less ordered.

Figures 3 and 4 verify also that rocking is sensitive to more than one strong ground motion param-
eters. Overturning occurs as both PGV and Tp increase, without though a distinguishable pattern. As
expected, overturning is more probable for the smaller in size electrical equipment of Figure 4 than the
larger rocking frame of Figure 3, the well-known size effect of rocking behavior [15].

2.2.3. Physically similar (‘universal’) rocking behavior. This section offers a physically consistent,
and practically useful, way to scale the rocking behavior for excitations of different intensities and
predominant frequencies. With the aid of the proposed scaling, we build (in Section 2.3) normalized
fragility curves, indifferent to the size and the frequency of the rocking structure or the amplitude and
the predominant frequency of the near-fault ground motion.

Consider a ground motion with a specific waveform (i.e., a specific acceleration time-history shape),
for example, the CSGM excitation of Figure 1. Let the (acceleration) amplitude ag D PGA and
the frequency !g D 2�=Tp characterize the length and time scale of the waveform, respectively
[43]. Then, the response (e.g., the absolute peak rocking rotation j�maxj) can be written as a (usually
unknown) function of the general form:

j�maxj D f

�
˛; p; !g ;

ag

g
; �

�
(8)

Equation (8) contains six characteristic variables that involve only one reference dimension, time
ŒT �. The six variables can be grouped into a reduced number of independent dimensionless…-products
according to Buckingham’s … theorem [44]: .6 variables/� .1 reference dimension/ D 5…-products.
Specifically,

j�maxj D �

�
!g

p
;
ag

g
; ˛; �

�
(9)

where the only dimensionless term arising from dimensional analysis is the frequency ratio !g=p.
Recall that according to dimensional analysis [45], dimensionless quantities cannot be combined.
Hence, the already dimensionless groups of Equation (9) (e.g., the rotation j�maxj and the angle ˛)
cannot be further combined to reduce the number of the independent dimensionless …-products.

However, if we distinguish the notion of ‘dimension’ to that of ‘orientation’, we can supplement
standard dimensional analysis with orientational analysis (see, e.g., [2, 46]). In particular, we can
demand that the physical equations (e.g., Equations (4) and (9)) are both dimensionally and orienta-
tionally homogeneous. Then, the dimensionless groups from Buckingham’s theorem (Equation (9))
can be further reduced to dimensionless–orientationless groups [2] as

j�maxj

˛
D �

�
!g

p
;
ag

g˛
; �

�
(10)

The products/groups of Equation (10) yield an exact representation of the rocking response when
the slenderness angle ˛ is small [2]. If ˛ is not small, it should be included explicitly as an
additional independent group [2]. For simplicity, let us focus herein on the case of small ˛ (slender
rocking structures).
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Figure 5. Physically similar rocking response.

Figure 5 demonstrates the merits of adopting the proposed dimensionless–orientationless description
of the rocking response: the governing groups of Equation (10). Figure 5 (left) plots the time-history
response of two different rocking structures subjected to two (CSGM) excitations of different ag and
!g , but the same waveform (of Figure 1). Even though, the two structures differ both in size (p) and in
shape (˛), when the associated dimensionless–orientationless groups (right-hand side) of Equation (10)
take the same values, the response curves of the two different problems collapse into a unique, ‘uni-
versal’ (or ‘master’) curve (Figure 5). This is a special type of symmetry of unique importance for
nonlinear phenomena. It is called physical similarity (or self-similarity in [45]); the property of phys-
ical similarity elucidates what matters in rocking response: the values of the dimensionless governing
groups of Equation (10) and not the pertinent dimensional values of, for example, the size (p) or the
shape (˛) of the structure.

2.3. Fragility analysis

In general, fragility (or vulnerability) stands for the conditional probability Pf that an EDP will
exceed a certain capacity limit, say c, given an IM value:

Pf D P .D > C D c j IM/ (11)

More specifically, this study focuses on the conditional probability Pf jr that the EDP

(Equation (7)) of a structure will exceed a certain (capacity) threshold, given an IM value and given
that the structure is rocking. Figure 6 illustrates the probability tree diagram that captures the pecu-
liarities of rocking response and facilitates the calculation of probability Pf jr . Let Pnr denote the
probability that the structure will remain resting on the ground (non-rocking response; Figure 6)
throughout the earthquake shaking. Recall that rocking only appears if the ground motion acceleration
exceeds a minimum threshold (Equation (5)). Let also Pro denote the probability that rocking occurs
and results in overturning. Then, the probability Pf jr that the EDP will exceed a certain capacity
limit given an IM value is derived by the union of two likelihoods (Figure 6): (a) Rocking results in
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Figure 6. Probability tree diagram for the rocking problem.

overturning, and (b) the structure survives the excitation, but during its rocking response,
the EDP exceeds the capacity limit c. Thus, Equation (11) becomes [31]

Pf jr D Pro C .1 � Pro/ Pex .D > C j IM/ (12)

Sections 2.3.1 to 2.3.3 zoom in Equation (12) and explain how each term can be calculated.

2.3.1. Intensity measures. A far from trivial, the longstanding challenge (e.g., [10]) is to identify
appropriate IM /s for rocking structures. A rational approach is to select IM s that ‘mimic’ the pro-
posed dimensionless–orientationless groups of Equation (10), and instead of dimensional IM s to use
dimensionless IM s similar to that in [41] for sliding objects. Referring again to Equation (10), there
are two groups that could be considered as candidate IM s: the frequency ratio !g=p and the dimen-
sionless slenderness ag=.g tan˛/. The former hinges on a time scale of the excitation !g , while the
latter on a length scale of the excitation ag . We examine four common strong ground motion param-
eters that could be used as ag or !g accordingly: the peak ground velocity PGV (D Vp for pulse
excitations), the peak ground acceleration PGA, the predominant period Tp of the pulse, and the
mean period of the CSGM Tm (see [43] and references therein). Using the four well-known strong
ground motion parameters, we construct the following alternative versions of the two groups !g=p and
ag=.g tan˛/:

IM1 D
!p

p
; IM2 D

!m

p
; IM3 D

PGA

pPGV
; IM4 D

PGA

g tan˛
; IM5 D

pPGV

g tan˛
; IM6 D

!mPGV

g tan˛
(13)

where !p D 2�=Tp , !m D 2�=Tm, p is the rocking frequency parameter of the structure, ˛ is the
slenderness angle, and g is the acceleration of gravity. IM s IM1 to IM3 (Equation (13)) reconstruct
the frequency ratio (!g=p; Equation (10)), whereas IM4 to IM6 (Equation (13)) are alternative dimen-
sionless slenderness (ag=.g tan˛/; Equation (10)) groups. In the following, we refer to the former as
‘frequency ratio’ IM s and to the latter as ‘dimensionless slenderness’ IM s.

In Section 2.3.2, we examine first the most appropriate and/or proficient [47] IM s in terms of their
ability to reduce the dispersion in the (response) results. Then, we illustrate the superiority of bivariate
IM s over univariate IM s and proceed accordingly with their selection.

2.3.2. Probability of limit state exceedance during ‘safe’ rocking. This section focuses on the calcula-
tion of the conditional probabilityPex (Figure 6 and Equation (12)) that a ground motion with IM D x
will cause the exceedance of a performance/capacity limit c, without the occurrence of overturning
(‘safe rocking’).

The calculation procedure is based on two typical assumptions. Firstly, that both the capacity C and
the demand D are random variables following lognormal distributions. Then, Pex can be written
as follows:

Pex D Pex .D > C j IM D x/ D ˆ

�
ln x � �

ˇDjIM

�
(14)
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where ˆ./ is the standard (i.e., with mean 0 and standard deviation 1) normal cumulative distribution
function, x are the values of the EDP , � is the median value of the structural demand as a function
of IM , and ˇDjIM is the dispersion, or logarithmic standard deviation, of the demand conditioned on
the IM [47].

The second typical assumption (Cornell et al.[48]) is that the median demandDm and the IM obeys
a scale law, such that

Dm D a .IM/b (15)

Conveniently, the assumed scale law (Equation (15)) becomes a straight line on the lnDm vs ln IM
plane:

ln.Dm/ D ln .a/C b ln .IM/ (16)

which enables the estimation of parameters a and b by means of linear regression analysis.
Figure 7 presents sample results of the linear regression analyses considering solely the ‘safe-

rocking’ cases (of Figure 3). Again, Figure 7(a) concerns pure pulse excitations (Section 2.1.1),
whereas part Figure 7(b) adds on the same pulses the stochastic HFC (generating CSGMs according
to Section 2.1.3). Figure 8 offers a comparative evaluation of all candidate IMs of Equation (13). The
performance of the IM s is assessed with respect to their ability to reduce the dispersion of the response
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Figure 7. Sample results of the linear-regression analyses for (a) pure M&P pulse excitations and (b)
CSGMs. None of the examined IM s exhibits a strong effect on the response.
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Figure 8. Comparative evaluation of the candidate IM s of Equation (14) in terms of three dispersion
measures: R2, ˇDjIM , and 	. If an IM encloses the others, it performs better.

(results). As measures of dispersion, we consider the coefficient of determination R2, the logarithmic
standard deviation ˇ D ˇDjIM , and the proficiency 	 D ˇDjIM=b proposed by Padgett et al. [47].
Rmax , ˇmin, and j	minj (in Figure 8) are the pertinent maximum and minimum values, accordingly,
among all examined IM s.

The best IM s are (Figure 8) the ones expressing the dimensionless slenderness (ag=.g tan˛/),
and primarily IM4 D PGA=.g tan˛/ and IM5 D .pPGV /=.g tan˛/. Note that for a particular
structure (given p; ˛ values), the performance of IM4 and IM5 is determined solely by PGA and PGV,
respectively (two traditional IM s in earthquake engineering). On the contrary, IM6 hinges on both a
time scale Tm and a length scale PGV of the excitation. The dimensionless slenderness IM s (IM4

to IM6) present small differences for M&P pulses, but IM4 D PGA=.g tan˛/ is the most proficient
[47] for CSGMs. Among the examined frequency ratio IM s (IM1 to IM3 in Equation (13)), the most
proficient is IM3 D PGA=.pPGV /, again, for the more challenging case of CSGMs (Figure 8(b)). In
general though, the performance of all examined frequency ratio IM s is surprisingly poor. Recall that,
on the contrary, rocking response to (trigonometric) pulse excitations is very sensitive to the !p=p ratio
and becomes more ordered for higher !p=p values [2]. Still, even for pure M&P pulse ground motions
(Figure 8(a)), none of the frequency ratio IM s achieves a strong correlation with the response.

Importantly, Figure 7 unveils a lack of a distinguishable linear trend in the response. In other
words, regardless which of the IM s performs best compared with the others, none of the exam-
ined IM s shows a strong effect on the response. Partly, this failure of traditional strong ground motion
parameters (e.g., PGA;PGV; and PGA=PGV ) to capture rocking response should be attributed to
the negative stiffness mechanism and subsequently the lack of resonance of rocking structures under
constant frequency ground motions; for example, [11]. At this point, recall in [49] that an IM might
affect the structural response very differently if considered individually, as opposed to when it is com-
bined with a second IM. For instance, when either the length scale ag or the time scale !g of an
excitation is considered separately as the single IM , the analysis overlooks the strong dependency of
the structural behavior on the other IM s. This simple observation motivates a different, more ‘holistic’,
approach of the problem.

Figure 9 (left and right) presents a three-dimensional view, ln.j�mj=˛/ � lnVp � lnTp , of the
same ‘safe-rocking’ simulations (of Figure 3) as Figure 7(a) and (b), respectively. If viewed from
the proper viewpoint (Figure 9), remarkable order emerges: The response points lie consistently on
two distinct planes; a trend is completely hidden in the two-dimensional representations of the same
results (e.g., Figure 7). The existence of the two distinct planes unveils that rocking response scales
differently for low intensity, versus high intensity, excitations. Put simply, rocking is more sensitive to
low amplitude excitations, in the sense that even slight variations of the excitation characteristics have
a dramatic effect on the peak rocking response. Both ‘low’ (e.g., PGA < 1:30ag;min) and ‘high’ (e.g.,
PGA > 1:30ag;min) amplitudes are defined according to the minimum rocking acceleration ag;min D
g tan˛, a characteristic property of the structure. For economy of space, we omit the presentation
of the best fits with more conventional distributions: linear (planar), bilinear, or higher-order two-
dimensional distributions, because they result in inferior approximations compared with the proposed
biplanar distribution of Figure 9. The recent study of Acikgoz and DeJong [10] marked a region, with
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Figure 9. Three-dimensional illustration of the same ‘safe-rocking’ results as Figure 7. The proper view-
point unveils remarkable order: the response points, for M&P pulse excitations (a) and for the combined

synthetic ground motions (b), lie consistently on two distinct planes.

Table II. The fitted biplanar distributions a
�
PGA
g tan˛

�b1 �
PGA
pPGV

�b2
for the response analyses of Figures 3

and 4.

Excitation Structure (p˛) 1:00 < PGA=.g tan˛/ < 1:30 PGA=.g tan˛/ � 1:30

(rad/s j rad) a b1 b2 .R2/ a b1 b2 .R2/

M&Ps frame (1.0j0.15) 0.001 29.40 �1.994 (0.915) 1.490 1.574 �2.004 (0.896)
M&Ps el.eq. (2.5j0.19) 0.001 30.51 �2.027 (0.883) 1.484 1.644 �2.013 (0.872)
CSGMs frame (1.0j0.15) 6.02e-6 28.31 �0.236 (0.737) 0.104 2.640 �1.436 (0.557)
CSGMs el.eq. (2.5j0.19) 11.3e-6 30.39 �0.072 (0.724) 0.063 2.954 �0.942 (0.370)

M&P, Mavroeidis and Papageorgiou; CSGM, combined synthetic ground motion.

almost the same boundaries, as sensitive to uplift because of the HFC. To the best of our knowledge
though, this is the first time a clear response pattern is detected and quantified (Table II).

Importantly, the generic equation of a plane in a three-dimensional (ln.j�mj=˛/ � ln IMx �

ln IMy) space is as follows:

ln.Dm/ D b1 ln.IMx/C b2 ln.IMy/C ln.a/ (17)

which implies that the mean demand is given by a bivariate (vector-valued) intensity measure OIM D�
IMx ; IMy

�
as

Dm D a
�
IM b1

x IM
b2
y

�
(18)

where IMx and IMy are two appropriate (scalar) IM s, and a; b1; b2 are coefficients calculated using
multi-linear regression analysis [50]. For IMx and IMy , we adopt the best dimensionless slenderness
IM (IM4 D PGA=.g tan˛/) and the best frequency ratio IM (IM3 D PGA=.pPGV /) of Figure 8,
respectively. Figure 8 is not directly applicable to the biplanar distribution; however, the results of the
analysis indicate that it still offers a representative ranking of the relative performance of the examined
IM s.

The transition between the two planes takes place at a constant acceleration boundary (Figure 9).
Iterative multi-linear regression analyses allow the location of the transition limit through the min-
imization of the dispersion (e.g., the coefficients of determination R2) of both planes of Figure 9
simultaneously. Approximately, this happens for PGA=.g tan˛/ D 1:30. Table II lists the regression
parameters a; b1; b2 and the coefficient of correlation R2 for the fitted biplanar distributions.
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Consider again the two different structures: the rocking frame from Figure 3 and the rocking elec-
trical equipment (el.eq.) from Figure 4. Table II gives the fitted biplanar distributions when these
structures are subjected to the same suite of ground motions, either pure (M&P) pulses or CSGMs.
The agreement of the biplanar distributions, for the two different structures (different p and ˛ values),
verifies the ‘universal’ character of the observed pattern. The agreement is excellent for pure M&P
excitations (Table II), for which, in addition, the R2 values disclose an almost deterministic behavior
(Figure 9). Note that the coefficient of determination values for the whole range of the biplanar dis-
tributions (not shown in Table II) are as follows: R2 D 0.909 (0.881) under M&P pulse excitations
and R2 D 0.598 (0.568) under CSGMs, for the rocking frame (electrical equipment), respectively.
Not surprisingly, the agreement is not as satisfying for CSGMs, as characterizing a complex wave-
form (like the CSGMs) with solely two numbers—two common strong ground motion parameters, for
example, ag D PGA, !g D 2�=Tp—results in loss of information. For instance, the analysis herein
neglects the effect of the duration of the excitation on rocking response [11]. Clearly, this is a limi-
tation of the proposed approach and an open issue for further research towards new, improved IM s
tailored to the needs of rocking structures. However, this task goes beyond the scope of the present
paper. Further, the presence of the HFC adds, as expected, noise in the response (Figure 9, right)
that is reflected in the lower R2 values. Still, the proposed biplanar distribution succeeds not only in
reducing the overall dispersion but also in bringing forward the existence of a strong—and, to date,
unknown – response pattern.

Finally, Figure 10 plots the probability of LS2 (Table I) exceedance Pex fragility curves for the
best scalar IM (Equation (15)) and for the vector-valued IM of Equation (18), adopting the common
lognormal assumption (Equation (14)). The superiority of the bivariate fragility curves (FCs) becomes
apparent when compared with conventional FCs for given PGA/PGV values. For example, Figure 10
compares univariate with bivariate FCs for given PGA/PGV values. As the PGA/PGV ratio increases,
the fragility of the rocking structure (Figure 10) decreases, a well-known trait of rocking behavior
that the univariate FC neglects. In addition, the univariate FC is flatter than the bivariate FCs, which
indicates higher uncertainty.

2.3.3. Probability of collapse. The likelihood of overturning due to rocking (with probability Pro in
Figure 6), as well as of non-rocking (with probability Pnr ), is expressed with a ‘categorical’ [50]
response variable. In particular, a zero-valued (0) or one-valued (1) parameter suffices to describe
overturning (or rocking initiation), because the structure either overturns or not (similarly, the structure
either commences rocking or not). In both cases, the ‘categorical’ nature of the response hinders the
calculation of the statistical moments (mean � and standard deviation ˇ) necessary for estimating the
probability as (e.g.) in Section 2.3.2.

The numerical results of the response analyses could provide a posterior estimation (e.g., [31])
of Pnr D (number of non-rocking simulations)/(total number of simulations) and Pro D (number
of rocking-overturning simulations)/(total number of rocking simulations). Nevertheless, to derive
a predictive (a priori) expression for the probability Pf jr , we need to calculate Pf jr , and subse-
quently Pnr and Pro (Equation (12)), as a function of the adopted IM /s. In lieu of the method of
moments, we employ a maximum likelihood estimation (MLE) approach (see, e.g., [26, 49, 51]) and

Figure 10. Comparison of bivariate with univariate Pex fragility curves for different pPGV=PGA values.
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calculate the fragility function parameters (e.g.,� and ˇ in Equation (20)) for which the assumed statis-
tical distribution attains the highest likelihood of producing the observed data. The likelihood function
L is as follows:

L D

nY
jD1

P
´j
ro .1 � Pro/

1�´j (19)

where ´j is the binomial distribution [50] variable, equal to unity when overturning occurs and null
otherwise. Pro is the probability of (rocking) overturning, for which again the common, but not unique
(e.g., Gehl et al.[49]), assumption is given by a lognormal cumulative distribution function. The
probability Pro that a ground motion with IM D x will cause overturning then becomes

Pro D Pro .D � overturn: j IM D x/ D ˆ

�
lnx � �

ˇ

�
D
1

2

�
1C erf

�
ln x � �

ˇ
p
2

��
(20)

where erf is the error function. Substituting Equation (20) into Equation (19), the likelihood function
L takes the following form:

L D

nY
jD1

ˆ

�
lnxj � �

ˇ

�´j �
1 �ˆ

�
lnxj � �

ˇ

��1�´j
(21)

Numerical optimization [37, 51] returns the parameters O�; Ǒ that maximize L:

°
O�; Ǒ

±
D max

�;ˇ

nY
jD1

ˆ

�
ln xj � �

ˇ

�´j�
1 �ˆ

�
ln xj � �

ˇ

��1�´j
(22)

In a similar way (with Equations (19) to (22)), one could estimate the probability of non-rocking Pnr
or, in other words, the probability of LS1 exceedance (Table I). An additional benefit of adopting
a PGA-based dimensionless slenderness IM (e.g., IM4 D PGA=.g tan˛/) though is that such a
calculation is not necessary, as rocking initiation becomes—at least in theory—deterministic. Ground
motions with PGA � .g tan˛/ trigger rocking (hence Pnr D 0), whereas ground motions with
PGA < .g tan˛/ do not (in which case Pnr D 1). Therefore, we omit the calculation of Pnr .

The examined rocking frame (p D 1:0 rad/s and ˛ D 0:15 rad) rarely overturns (Figure 3). Thus, its
response does not offer enough observation/data to estimate, in an unbiased and efficient manner, the
probability of overturning with the MLE procedure. For this reason, the present section focuses on the
response of the electrical equipment of Figure 4. Figure 11 plots the Pro (probability of overturning)
fragility curves as calculated with the aid of the MLE method for different IMs. If the Pro fragility
curves of Figure 11 were based on the limited rocking frame data, the � and ˇ values would be � D
0:762 (0.870) and ˇ D 0:113 (0.155) under M&P pulses (and under CSGMs accordingly). Figure 11
depicts also the numerical simulation results (data) with circles of different areas. The ordinate (y-
coordinate) of each circle is the percentage of collapse occurrences within the specific IM value (strip).
For instance, an ordinate of 0.4 means that 40% of the analyses for that particular IM value (strip)
resulted in overturning. The size of the circle indicates the number of the pertinent data (the wider the
circle, the more the corresponding observations).

Interestingly, a pure M&P pulse excitation with the same PGV as a CSGM leads to higher probability
of overturning and lower dispersion, that is, to more conservative results (Figure 11). This observation
seems to corroborate the extensive use of pure pulse ground motions in literature (e.g., [2, 3, 16–19])
as a means of elucidating the overturning trends of a rocking structure. Recall though that the absolute
number of overturning occurrences is significantly smaller for M&P pulses, compared with CSGMs
(Section 2.2.2). In other words, if the pulse is capable of initiating rocking, it is more likely to cause
overturning than a CSGM excitation of the same PGV. Further, unlike the fragility in the case of ‘safe
rocking’ (Section 2.3.2), pPGV=.g tan˛/ outperforms, for example, in terms of standard deviation
ˇ, all other scalar IM s. On the contrary, the performance of PGA=.g tan˛/ is remarkably poor,
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Figure 11. Rocking overturning fragility curves .Pro/ for different types of excitations and different
univariate (dimensionless) IM s.

Figure 12. Rocking overturning fragility curves .Pro/ for different types of excitations and different
bivariate, hybrid (dimensionless) IM s.

especially for pure pulses (Figure 11, top right). Yet, as Figures 11 and 12 illustrate later on, rocking
overturning is primarily a matter of velocity. Recall (e.g., [2]) that critical overturning conditions for
a rocking block can be derived from velocity criteria, usually the angular velocity of the structure at
the time instant the excitation ends. A PGA-based IM alone (e.g., IM4 D PGA=.g tan˛/) cannot
capture response velocity and, hence, fails to correlate strongly with overturning.

Therefore, as a more refined approach, we employ a linear combination of two IM s and seek a
hybrid, bivariate, intensity measure OIM of the following form:
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ln. OIM/ D



1C 

lnIMx C

1

1C 

lnIMy (23)

similar to that in [49] (for a different type of structures). We employ a dimensionless slenderness IM
as IMx and supplement it with a frequency ratio IM for IMy . At the two 
 extremes, we retrieve one
of the two scalar IM components. Specifically, for 
 D 0, Equation (23) gives ln. OIM i / D ln.IMy/,
while for 
 ! 1: ln. OIM i / D ln.IMx/. Instead of Equation (20), probability Pro now becomes a
bivariate function of argument OIM.IM1; IM2/ D x.IM1; IM2/ D x equal with

Pro .D � overturn: j x .IM1; IM2//D
1

2

�
1Cerf

�
1

ˇ
p
2

�



1C 

lnIM1C

1

1C 

lnIM2 � �

���
(24)

where erf is the error function, � is the mean value, and ˇ is the standard deviation. Note that the IM
of Equation (18) is a special case of that of Equation (23), because the two IM s are equivalent when

a D 1; b1 D



1C 

; b2 D

1

1C 

(25)

Figure 12 plots the overturning fragility curves (Pro) as calculated with the MLE method. Sim-
ilar to Figure 11, Figure 12 compares two dimensionless slenderness IM s, PGA=.g tan˛/ and
pPGV=.g tan˛/, using, for economy of space, only the most efficient frequency ratio IM :
pPGV=PGA. In general, the use of hybrid, bivariate OIM s reduces the dispersion (standard devi-
ation ˇ) compared with the pertinent scalar IM s (Figure 11). Complementing a PGA-based IM
PGA=.g tan˛/ with a frequency ratio IM yields a hybrid, bivariate IM , at least as efficient as the
univariate pPGV=.g tan˛/. This is true for both types of excitations: M&P pulses and CSGMs.

3. PROPOSED ‘UNIVERSAL’ FRAGILITY CURVES

Sections 2.3.2 and 2.3.3 offer the probability of a limit state threshold being exceeded during ‘safe
rocking’ Pex and the probability of rocking overturning Pro, respectively. With these two key ingre-
dients (Pex and Pro) at hand, the calculation of the seismic rocking fragility Pf jr becomes simple for
any desired limit state threshold (Equation (12) and Figure 6). For the calculation, one can use either
a univariate or a bivariate IM . An efficient univariate IM to capture both rocking overturning (i.e.,
Pro) and ‘safe-rocking’ response (i.e., Pex) is pPGV=.g tan˛/ in accordance with [10]. On the other
hand, the pair of IM s, (PGA=.g tan˛/, pPGV=PGA), forms a bivariate IM powerful in predicting
both Pro and Pex , simply by altering the exponents. While, the use of a univariate IM is a simpler
approach, it results in increased scatter. On the other hand, the more complex bivariate IM approach
reduces drastically the uncertainty, but at the cost of additional information about the frequency content
of the ground motion.

In either case, the study proposes the use of dimensionless IM s, by scaling strong ground motion
parameters with respect to the dynamic characteristics of the structure. In this way, a ‘universal’
description of rocking fragility is achieved for pure pulse ground motion and an approximately ‘uni-
versal’ description for CSGMs (Section 2.2.3 and Table II). It follows that for a given ground motion,
two different structures (different p and ˛ values) yield different IM values, reflecting their corre-
sponding seismic fragility. For instance, consider a CSGM with PGA D 0:5g and PGA=PGV D 2.
Then, according to the bivariate FC of Figure 12 (bottom right), the probability of overturning of a
rocking frame (with p D 1:0 rad/s and ˛ D 0:15 rad) is Pro.1:55/ D 0:73, whereas the prob-
ability of overturning of a rocking electrical equipment (with p D 2:5 rad/s and ˛ D 0:20 rad)
is Pro.1:88/ D 0:81. Recall that the Pro calculations for both structures are based on the response
of the electrical equipment, as the rocking frame does not overturn often enough to yield reliable
FCs. For CSGMs, this introduces a small error, as the proposed normalized fragility estimation
is (for CSGMs) only approximately ‘universal’. This is obvious for example also in the differen-
tiation of the biplanar distributions between M&Ps and CSGMs in Table II. Still, the increased
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probability of overturning of the smaller (higher frequency parameter p) structure verifies the well-
known size effect of rocking behavior [15]: The larger the structure, the more safe it is against
rocking overturning.

As a future extension, the proposed herein fragility curves could be used to estimate the fragility
of a large class of very different rocking structures (e.g., the rocking wall, the rocking arch, or the
asymmetric rocking frame) via the recently proposed methodology in [1]. Recall that the DeJong and
Dimitrakopoulos [1] study yields the essential rocking parameters required to derive dynamic equiv-
alence with the rocking block. The equivalence is exact for single-block rocking mechanisms and
(usually, but not always) approximate for multi-block rocking structures.

4. CONCLUSIONS

This paper offers analytical FCs for slender, rigid structures rocking under (synthetic) near-fault ground
motions. The FCs are either univariate (conventional) or bivariate, based accordingly on a univariate or
bivariate IM /s. The study shows that when information about the frequency content of the excitation is
available, the bivariate FCs offer a superior estimation of the fragility, compared with the conventional
univariate FCs. Further, the paper also unveils that when the rocking structure survives the excitation
without overturning, the peak response follows a biplanar distribution. In this context, it brings for-
ward the existence of a critical peak ground acceleration, below and above which, rocking response
scales differently. The results, especially for pure pulse ground motions, show remarkable order in the
rocking response.

In pursuit of an efficient description of fragility, the study resorts to dimensionless–orientationless
IM s. The proposed IM s offer a normalized (approximately ‘universal’) description of rocking, indif-
ferent to the size and frequency of the structure or the amplitude and predominant frequency of the
(near-fault) ground motion. Thus, for a given ground motion, different structures yield different IM
values, reflecting their corresponding seismic fragility. In this context, the analysis also reveals the
need for new, improved, specialized IM s tailored to the peculiarities of rocking behavior.
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