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Abstract: Unlike conventional seismic design, the columns of a rocking frame are designed to uplift and pivot during earthquake excitation.
This paper investigates, analytically and numerically, the seismic response of a rocking frame with columns unequal in height (asymmetric),
which are either freestanding or hybrid, i.e., enhanced with supplemental damping and recentering capacity. The paper establishes the equa-
tions of motion following the principles of analytical dynamics. Throughout the study, the deformation of the structural members is con-
sidered negligible. The analysis considers both pulse-type and non-pulse-type (historic) ground motions. It shows that the effect of asymmetry
on the seismic stability of the rocking frame is marginal compared with the symmetric configuration, despite the very different kinematics of
the corresponding rocking mechanisms. In contrast, the seismic stability of the hybrid rocking frame is very sensitive to fracture elongation
of the supplemental restoring (tendons) and damping devices. The results confirm the high-performance seismic behavior of the planar
rocking frame, thus illustrating its potential as an alternative seismic design paradigm. DOI: 10.1061/(ASCE)EM.1943-7889.0000939.
© 2015 American Society of Civil Engineers.
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Introduction

The idea of allowing columns to uplift and pivot (i.e., rocking
behavior) as a means of seismic isolation during a strong earth-
quake event is not new. Ancient monuments survived millennia
within earthquake-prone regions mainly owing to the development
of rocking behavior (Papaloizou and Komodromos 2009, 2012;
Psycharis et al. 2013). Focusing on contemporary structures,
existing rocking bridges in New Zealand, e.g., the Rangitikei
Railway Bridge and the Deadman’s Point Bridge at Cromwell
(Priestley et al. 1996; Skinner et al. 1980), and novel research stud-
ies (Housner 1963; Kelly and Tsztoo 1977), date back to the 1960s
and 70s. This alternative seismic design hinges on diminishing
structural deformation (and therefore damage) by allowing rigid
body movements of structural segments around predefined inter-
faces, and it is currently resurging (Aaleti and Sritharan 2009;
Acikgoz and DeJong 2014; Antonellis and Panagiotou 2013;
Dimitrakopoulos and DeJong 2012b; Kafle et al. 2011; Voyagaki
et al. 2013).

The beneficial isolation effect of rocking has been con-
firmed experimentally for a variety of structural configurations,
including buildings [e.g., posttensioned precast wall systems
(Aaleti and Sritharan 2009) or self-centering steel-braced frames
(Eatherton et al. 2014)], as well as bridges [e.g., an A-shaped
(pure) rocking pier (Chen et al. 2006), a single rocking pier with
additional dissipaters (Solberg et al. 2009), or a two-column rock-
ing bridge bent with central posttensioned tendons (Cheng 2008)].
The addition of adequate self-centering capacity (central tendons)

reduces remarkably the residual displacements/deformations, with-
out altering significantly the peak response displacements of the
rocking piers (Sakai and Mahin 2004). Further, the addition of
energy dissipation limits the amplitude of rocking (DeJong and
Dimitrakopoulos 2014; Dimitrakopoulos and DeJong 2012a, b,
2013; Roh and Reinhorn 2010), and the dissipaters could be
replaceable and of low cost (Pollino and Bruneau 2007). The com-
bination of supplemental damping and additional recentering devi-
ces leads to hybrid-rocking systems. Such hybrid-rocking bridges
have been proposed as high-performance systems that could sur-
vive major earthquakes without significant damage (Palermo et al.
2005, 2007; Marriott et al. 2009; Kam et al. 2010; and among
others).

The structural configuration of the rocking frame (Fig. 1) seems
to be a promising combination of the merits of the precast construc-
tion method (Pang et al. 2008; Wacker et al. 2005; and references
therein), with the benefits of rocking isolation. Following the semi-
nal work of Priestley and Tao (1993) for buildings, Mander and
Cheng (1997) proposed the rocking bridge bent (i.e., the rocking
frame) as a damage-avoidance design for bridges. Makris and
Vassiliou (2012) revisited the seismic response of the rocking
frame. That study illustrated the direct equivalence between the re-
sponse of the symmetric rocking frame and the rocking block, and
investigated numerically its seismic stability within the context of a
potential bridge application. Importantly, the Makris and Vassiliou
(2014) work proved that the rocking frame is more stable, the more
top-heavy it is. Recently, DeJong and Dimitrakopoulos (2014)
coined a methodology to derive an exact or approximate equiva-
lence between complicated rocking structures (e.g., the rocking
wall, the rocking frame, and the rocking arch) and the archetypal
rocking block.

The present study extends previous work on the rocking frame
(DeJong and Dimitrakopoulos 2014; Dimitrakopoulos et al. 2013;
Makris and Vassiliou 2012) examining a frame that is (1) hybrid
(enhanced with additional energy dissipation and recentering
capacity) and/or (2) not symmetric. As the study shows, the
symmetric rocking frame represents a very limited case from a me-
chanics perspective, because the slightest deviation from the (per-
fect) symmetric geometry triggers an entirely different kinematic
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mechanism. This asymmetric mechanism has not been studied be-
fore, although it is imperative to do so if the symmetric rocking
frame is to be adopted as a realistic seismic design paradigm. Sim-
ilarly, the characteristics of the supplemental damping and restoring
devices (and primarily their ultimate fracture elongation) might
dominate the seismic response (Dimitrakopoulos and DeJong
2012a) and should, therefore, be carefully studied and designed.
This study is motivated by the need to assess the relative impor-
tance of two basic design aspects: (1) the characteristics of the sup-
plemental damping and restoring devices, and (2) the asymmetry of
the frame geometry, to pave the way for future (novel) applications
of the rocking frame as an alternative seismic design solution.

Analytical Modeling of the Asymmetric Hybrid
Rocking Frame

This section builds on previous research on the seismic response
of the planar rocking frame (DeJong and Dimitrakopoulos 2014;
Dimitrakopoulos et al. 2013; Makris and Vassiliou 2012). The
study focuses on structures designed to use planar rocking, as op-
posed to structures that (accidentally) happened to rock. Rocking
is assumed to be confined within a desired plane, and accidental
three-dimensional rocking is ignored. However, for the general case
of nonplanar motion of rocking structures the reader is referred to
Chatzis and Smyth (2012) and Zulli et al. (2012).

Consider the (hybrid) rocking frame enhanced with central un-
bonded tendons and viscous dampers at the bottom of the piers
(Fig. 1). To offer insight on the effect of the supplemental damping
and the additional stiffness on the seismic stability of the rocking
frame in a general way without considering the detailed behavior
of specific supplemental devices, this study assumes (as a first
approach) that the mechanical behavior of the tendons is that of
ideal springs, and the behavior of the dampers is that of ideal

linear-elastic viscous dashpots. The two columns of the frame have
different heights H1 and H. Further, sliding at the contact surfaces
is ignored. However, regarding the influence of sliding on rocking
structures the reader is referred to Brogliato et al. (2012). Therefore,
ignoring the deformation of the (three) members, this asymmetric
hybrid rocking frame exhibits a three-block rocking mechanism
(Fig. 1). The equations offered in the present section also cover
the symmetric rocking frame, freestanding or hybrid, as a special
case (H1 ¼ H).

Kinematics

Fig. 1 illustrates the assumed three-block mechanism for clock-
wise (negative: subscript n) and counterclockwise (positive: sub-
script p) rotations and the pertinent pivot points A, B, C, D and
A 0, B 0, C 0, D 0 accordingly. Because of unequal heights, the two
columns exhibit different rocking rotations and the connecting
beam, apart from a rigid-body translation, also sustains rigid-body
rotation (Fig. 1).

The kinematics of the three-block mechanism is far from trivial
and has been the subject of extensive research in the literature
of linkages, machines, and mechanisms under the term four-bar
linkage [see for instance Ceccarelli (2007), Freudenstein (2010),
and references therein]. The following discussion is confined to the
needs of the present study. The three-block mechanism of Fig. 1
can be captured with a single generalized coordinate, selected to be
the angle φ of segment AB with respect to the x-axis. The pertinent
rocking amplitude is simply the rotation ϕ with respect to the initial
position: ϕ ¼ φ − φ0;p for the counterclockwise (positive) rotation
and ϕ ¼ φ − φ0;n for the clockwise (negative) rotation (Fig. 1).

The orientation of the bars BC and CD, with respect to the
positive x-axis can be written as a function of the generalized
coordinate and known geometry

(a) (b)

(d) (e)

(c)

Fig. 1. Examined rocking frame: (a) during counterclockwise rotation; (b) at rest position; (c) during clockwise rotation and the rocking mechanisms
for (d) counterclockwise; (e) clockwise rotation

© ASCE 04015003-2 J. Eng. Mech.
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φBCðφÞ ¼ arctan

� −R0 sinφþ r0 sinφAD þ R1 sinφCDðφÞ
−R0 cosφþ r0 cosφAD þ R1 cosφCDðφÞ

�

φCDðφÞ ¼ arctan

�
R0 sinφ − r0 sinφAD

R0 cosφ − r0 cosφAD

�

− arccos

�
BD2ðφÞ þ 4R2

1 − L2

4R1 · BDðφÞ
�

ð1Þ

where R0, R1 and r0 = half-lengths of blocks AB, CD, and AD
respectively; and length BD is given as (Fig. 1)

BD2ðφÞ ¼ ð2R0Þ2 þ ð2r0Þ2 − 8R0r0 cosðφ − φADÞ ð2Þ
Differentiating the rotations with respect to time yields the

corresponding angular velocities

φ̇BCðφ; φ̇Þ ¼
∂φBC

∂φ φ̇ ¼ ∂φφBCðφÞ · φ̇;

φ̇CDðφ; φ̇Þ ¼
∂φCD

∂φ φ̇ ¼ ∂φφCDðφÞ · φ̇ ð3Þ

where φ̇ = angular velocity of the member AB (upper dot denotes
differentiation with respect to time); and ∂φ = partial derivative with
respect to the (subscript) φ. Similarly, the second derivatives with
respect to φ are defined as

∂2φBC

∂φ2
¼ ∂2

φφφBCðφÞ;
∂2φCD

∂φ2
¼ ∂2

φφφCDðφÞ ð4Þ

Further, the displacements of the centers of mass GAB, GBC,
GCD of the frame members are (Fig. 1)

xGABðφÞ ¼ 2bþ R0 cosφ

xGBCðφÞ ¼ 2bþ 2R0 cosφþ rGBC cos½φBCðφÞ þ ψBC�
xGCDðφÞ ¼ Lþ 2bþ R1 cosφCDðφÞ
yGABðφÞ ¼ R0 sinφ

yGBCðφÞ ¼ 2R0 sinφþ rGBC sin½φBCðφÞ þ ψBC�
yGCDðφÞ ¼ 2H − 2H1 þ R1 sinφCDðφÞ ð5Þ

In Eq. (5) and throughout the present study, the distance rGBC
from the pivot points B or B 0 to the center of mass GBC and
the angle ψBC take different values with respect to the sign of ro-
tation, and they are defined from the geometry of the frame (Fig. 1).
Differentiating Eq. (5), the velocities of the three frame members
are determined.

Equation of Motion during Rocking

The equation of motion for the rocking mechanism of Fig. 1 can be
derived using Lagrange’s equation:

d
dt

�∂T
∂φ̇

�
− ∂T
∂φþ ∂V

∂φ ¼ Q ð6Þ

where T = kinetic energy; V = potential energy; Q = generalized
force; and φ = generalized coordinate that describes the rocking
motion. The potential energy of the three-block mechanism can
be expressed as:

V ¼ Vfr þ V tend ð7Þ
where Vfr = potential energy of the freestanding frame (due to the
gravitational forces); and V tend = additional potential energy due to
the elongation of the tendons. It holds that

Vfr ¼ g½ðmAB þ 2mBCÞR0 sinφþmBCrGBC sinðφBC þ ψBCÞ
þmCDð2H − 2H1 þ R1 sinφCDÞ� ð8Þ

where mAB, mBC, and mCD = masses of blocks AB, BC, and CD
accordingly.

During rocking, each tendon deforms into three inclined seg-
ments with different slopes. The length of these (three) segments
depends on the rocking rotation ϕ, and subsequently, so does the
exact value of the strain energy. For small rotations however, the
strain energy is approximately calculated from the net elongation
of each tendon, equal to the sum of the elongations at the base and
the top of each tendon, which is equivalent with assuming that the
tendons remain straight. Hence

V tend ¼
1

2
kðδlA þ δlBÞ2 þ

1

2
kðδlC þ δlDÞ2 ð9Þ

For the AB tendon, the elongations at the base δlA and the top
δlB are

δlA ¼ 2b sin

�
ϕ
2

�
; δlB ¼ 2b sin

�
ϕþ φBC

2

�
ð10Þ

Similarly, for the CD tendon

δlD ¼ 2b sin

�
ϕ1

2

�
; δlC ¼ 2b sin

�
ϕ1 þ φBC

2

�
ð11Þ

where

ϕ ¼ − π
2
� αþ φ and ϕ1 ¼ − π

2
� α1 þ φCD ð12Þ

are the rocking rotations of the AB and CD column, respectively
(Fig. 1). Further, α1 ¼ b=H1 = slenderness of the CD column
(Fig. 1); and k ¼ EA=l = stiffness of the tendons, with E = Young’s
modulus, A = the cross-sectional area, and l = length of each ten-
don. For simplicity, the present study assumes the two tendons have
the same stiffness. Again, assuming the supplemental tendons AB
and CD are effectively straight (small rotations/deformations
assumption), strains εAB and εCD are εAB ¼ kðδlA þ δlBÞ=ðEAÞ
and εCD ¼ kðδlC þ δlDÞ=ðEAÞ, respectively.

In Eq. (12), and throughout this paper, the upper of the two signs
corresponds to counterclockwise (positive) rocking rotation, and
the lower sign to clockwise (negative) rocking rotation. The strain
energy expression of Eq. (9) can be simplified for small rotations as
in Appendix I [Eq. (34)].

Ignoring the mass of the tendons and the dampers, the kinetic
energy of the system is

T ¼ 1

2
IABφ̇2 þ 1

2
IBCð∂φφBC · φ̇Þ2 þ 1

2
ICDð∂φφCD · φ̇Þ2

þ 1

2
mBC½ð2R0Þ2 þ 4R0rGBC cosðφ − φBC − ψBCÞ∂φφBC�φ̇2

ð13Þ
where IAB mass moment of inertia of AB with respect to the pivot
point A (or A 0 depending on the rocking mechanism/rotation);
and IBC and ICD = pertinent quantities for members BC and CD
respectively.

The calculation of the virtual work of the nonconservative forces
Q yields the generalized forces:

δWnc ¼ Qδφ ⇒ δWG þ δWD ¼ ðQG þQDÞδφ ð14Þ
where δWG and δWD correspond to the work done by the noncon-
servative forces (inertia and damping) (Oppenheim 1992). More
specifically, the generalized inertia force QG is:

© ASCE 04015003-3 J. Eng. Mech.
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QG ¼ −fmABR0 sinφþmCDR1 sinφCD∂φφCD

þmBC½2R0 sinφþ rGBC sinðφBC þ ψBCÞ∂φφBC�güg ð15Þ

and the generalized damping force QD is

QD ¼ −2Cb2f½1� sinðα� φÞ� þ ½1� sinðα1 � φCDÞ�∂φφ2
CDgφ̇
ð16Þ

where C = damping constant of the linear viscous dampers. Again,
the upper sign holds for counterclockwise (positive) rotation, and

the lower for clockwise (negative) rotation. After substituting into
Lagrange’s Eq. (6), the equation of motion can be written as

InlðφÞφ̈þ JnlðφÞφ̇2 þ GnlðφÞgþ KnlðφÞ þDnlðφÞφ̇ ¼ BnlðφÞüg
ð17Þ

Note that Eq. (17) is not equivalent with the equation of motion
of the rocking block (DeJong and Dimitrakopoulos 2014), even if
the additional terms due to the dampers and the tendons are ne-
glected. The terms Inl, Jnl, Gnl, Bnl, Knl, and Dnl are nonlinear
functions of the generalized coordinate and equal with:

InlðφÞ ¼ fIAB þ IBCð∂φφBCÞ2þ ICDð∂φφCDÞ2þ 4mBCR0½R0þ rGBC cosðφ−φBC−ψBCÞ∂φφBC�g
JnlðφÞ ¼−fIBC∂φφBC∂2

φφφBCþ ICD∂φφCD∂2
φφφCD þ 2mBCR0rGBC½cosðφ−φBC−ψBCÞ∂2

φφφBC þ sinðφ−φBC−ψBCÞð1−∂φφBCÞ∂φφBC�g
GnlðφÞ ¼ ðmABþ 2mBCÞR0 cosφþmBCrGBC cosðφBCþψBCÞ∂φφBC þmCDR1 cosφCD∂φφCD

BnlðφÞ ¼mABR0 sinφþmCDR1 sinφCD∂φφCD þmBC½2R0 sinφþ rGBC sinðφBC þψBCÞ∂φφBC�

KnlðφÞ ¼−4kb2
�
1

4
sin

φBC

2
∂φφBC

�
2∓ sin

�
α�φ�φBC

2

�
∓ sin

�
α1�φCD �φBC

2

��

þ cos2
φBC

4

�
cos

�
α�φ�φBC

2

��
1þ 1

2
∂φφBC

�
þ cos

�
α1�φCD�

φBC

2

��
∂φφCDþ

1

2
∂φφBC

���

DnlðφÞ ¼ 2Cb2f½1� sinðα�φÞ�þ ½1� sinðα�φCDÞ�∂φφ2
CDg ð18Þ

Owing to the lack of symmetry, the rocking mechanism differs
depending on the sign of the rotation ϕ (Fig. 1), which is positive
counterclockwise and negative clockwise. Note also that, for neg-
ative ϕ rotations, the distance rBC;n (measured from pivot point B
to the center of mass GBC) is larger, and the angle ψBC;n is smaller
than the corresponding distance rBC;p and angle ψBC;p for positive
ϕ rotations (Fig. 1). For this reason, depending on the sign of
the rocking rotation, the following substitutions must be made
in Eq. (18):

IBC ¼ IBC;p; rGBC ¼ rGBC;p; ψBC ¼ ψBC;p; for ϕ ¼ φ− φ0;p > 0

IBC ¼ IBC;n; rGBC ¼ rGBC;n; ψBC ¼ ψBC;n; for ϕ ¼ φ− φ0;n < 0

ð19Þ

Consequently, the minimum ground acceleration required to in-
itiate rocking assumes different values for positive and negative
rocking rotations. In either case, the minimum ground acceleration
üg;min capable of initiating rocking can be determined by substitut-
ing φ̈ ¼ 0; φ̇ ¼ 0;ϕ ¼ 0 ⇒ φ ¼ φ0;p;φ0;n into Eq. (17):

üg;min

g
¼ Gnlð0Þ

Bnlð0Þ
¼ λ ð20Þ

Applying Eq. (20) for the two rocking mechanisms yields:

λ ¼ üg;min

g
¼ ∓ b

H
mAB þmBC½1þ h̄ − 2b̄ð�h̄∓1Þ� þmCDh̄

mAB þ 2mBC½b̄hH ð�h̄∓1Þ þ 1� þmCD

ð21Þ

where h̄ ¼ H=H1 = indicator of the asymmetry; and b̄ ¼ b=L.
Further, as a first approach, the study assumes the behavior of the

supplemental tendons and dampers is elastic until brittle fracture
(without previous yielding), which occurs simultaneously for all
tendons and dampers. This is a simplifying assumption, the validity
of which depends on the details of the particular case examined.
Hence, if the tendons and the dampers reach the fracture elongation
εf, say at time instant tf, the equation of motion switches irrevers-
ibly to the equation of the freestanding frame [terms Knl and Dnl
in Eq. (17) disappear]. Note that both Eqs. (17) and (18) capture
the motion of the symmetric hybrid frame as a special case
(H1 ¼ H).

Equations of Impact and Contact

The equation of motion, Eq. (17), is valid for nonzero values of the
rocking rotation (ϕ ≠ 0). When rocking rotation is zero ϕ ¼ 0 ⇒
φ ¼ φ0;p or φ ¼ φ0;n, the frame is at the initial/rest position
[Fig. 2(b)]. Let the preimpact rocking rotation be counterclockwise
(positive) as in Fig. 2(a), and let impact occur at points A, B, C,
and D [Fig. 2(b)].

To determine the postimpact state in the case of rocking, the
impact problem of Fig. 2 needs to be solved. There are five un-
knowns: the impulses ΛAx, ΛAy, ΛDx, ΛDy at the corresponding
pivot/impact points and the angular velocity after the impact
φ̇þ. In general, the impulse at point j Λj is defined as

Λj ¼ lim
Δti→0

Z
Δti

λjdt ð22Þ

where λj = pertinent impact force; andΔti = duration of the impact.
All nonimpulsive forces (e.g., inertia forces and self-weights) are
considered negligible compared with the impact forces. The follow-
ing five equations are considered:

© ASCE 04015003-4 J. Eng. Mech.
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1. Linear momentum along x-axis for the whole frame

ΛAx þ ΛDx ¼ ðmAB þmCD þ 2mBCÞHðφ̇− − φ̇þÞ
− 2mBCb̄hð1 − h̄Þðφ̇þ þ φ̇−Þ ð23Þ

2. Linear momentum along y-axis for the whole frame

ΛAy þ ΛDy ¼ ½−mABb −mCDbh̄ −mBCbðh̄þ 1Þ�ðφ̇þ þ φ̇−Þ
− 2mBCbb̄ðh̄ − 1Þðφ̇þ − φ̇−Þ ð24Þ

3. Moment of momentum about point A for the whole frame

LΛDy − ð2H − 2H1ÞΛDx ¼
�
IGAB þ IGCDh̄þmABH2

þmCDHð2H −H1Þ þ 2mBCð2H þ hÞH − 2mBC

×

�
L
2
− b

�
bb̄ðh̄ − 1Þ

�
ðφ̇þ − φ̇−Þ þ

�
−IGBC2b̄ðh̄ − 1Þ

þmABb2 −mCDbh̄ðL − bÞ þ 2mBCð2H þ hÞb̄hð1 − h̄Þ

−mBCb

�
L
2
− b

�
ð1þ h̄Þ

�
ðφ̇þ þ φ̇−Þ ð25Þ

4. Moment of momentum about B for the left column of the
frame

2HΛAx þ 2bΛAy ¼ ðIGAB −mABH2Þðφ̇þ − φ̇−Þ
−mABb2ðφ̇þ þ φ̇−Þ ð26Þ

5. Moment of momentum about C for the right column of the
frame

2H1ΛDx þ 2bΛDy ¼ ðh̄IGCD −mCDHH1Þðφ̇þ − φ̇−Þ
−mCDb2h̄ðφ̇þ þ φ̇−Þ ð27Þ

where IGAB, IGBC, IGCD = moments of inertia of the frame
members (AB, BC, CD) with respect to their center of mass.
When the frame members are assumed as rigid blocks
IGAB ¼ 1=3mABR2

0, IGCD ¼ 1=3mCDR2
1, and IGBC ¼ mBCρ2BC,

where ρBC = polar radius of gyration. Eqs. (23)–(27) describe
the impact problem for clockwise angular velocity. The impact
problem for counterclockwise angular velocity is treated simi-
larly, but the equations are not presented here for economy of
space. The solution of the system of Eqs. (23)–(27) returns the
four impulses and the postimpact angular velocity. The ratio
of the angular velocities after and prior to the impact is defined
as the coefficient of restitution η ¼ φ̇þ=φ̇−. In reality, the coef-
ficient of restitution depends on many parameters that are

usually (and herein) not simulated. Such parameters include
but are not limited to the interface material and imperfections
of the contact surface (ElGawady and Sha’lan 2011; Prieto
et al. 2004). Therefore, the coefficient of restitution η should
be considered as an independent parameter with problem-
specific value. The solution of the system of Eqs. (23)–(27)
provides solely a theoretical limit to the value of η needed to
sustain pure rocking motion. Fig. 3 presents the coefficient of
restitution (η) values for different column height ratios, and
Appendix II offers the pertinent (general) closed-form expres-
sion for the coefficient of restitution.

For the symmetric rocking frame, the coefficient of restitution
simplifies to:

η ¼ φ̇þ

φ̇− ¼ 1 − 3
2
sin2αþ 3γ cos 2α

1þ 3γ
ð28Þ

where γ ¼ mBC=2mAB, cosα ¼ H=R0, and sinα ¼ b=R0, thus
verifying the result derived by Makris and Vassiliou (2012).

Recall that for the same asymmetric frame geometry, the rock-
ing mechanism is different depending on the sign of the rocking
rotation. In other words, similar to an asymmetric block, the asym-
metric frame displays different slenderness depending on the sign
of the rocking rotation ϕ, and accordingly varies the coefficient of
restitution for clockwise and counterclockwise rotations (the two
different curves of the frame geometry in Fig. 3).

Seismic Stability of the Asymmetric Rocking Frame

This section examines the seismic response of a planar asymmetric
(freestanding and hybrid) rocking frame. Consider the rocking
frame of Fig. 1. Assume a cap-beam 13 m wide with height
2h ¼ 2 m. The frame consists of two rectangular columns with
2b ¼ 1.0 m base length and width each, same density but different
heights 2H ¼ 7.0 m and 2H1 ¼ 5.6 m respectively, and the dis-
tance L ¼ 8 m. The cap-beam/column mass ratio is taken as 10
according to Mander and Cheng (1997). The polar radius of gyra-
tion of the cap-beam cross section is assumed equal to 3.58 m, and
the distances from the center of mass of the cap-beam to the two
pivot points B and B 0 are rGBC;n ¼ 4.64 m and rGBC;p ¼ 3.68 m
(Fig. 1). For the hybrid frame, the damping and stiffness constants
of the dampers and the tendons, accordingly, are assumed equal
to 25.3 MNs=m and 23.5 MN=m following Mander and Cheng
(1997). Finally, the cap-beam–column and the column–foundation
connections prevent relative sliding, but allow uplifting and conse-
quently act as simple/free supports.

(a) (c) (b) 

B' C'

A'
D'

B C

D
A

pre-impact impact post-impact

Ay Ax

Dx
Dy

B' C'

A'
D'

B C

D
A

Fig. 2. Impulses Λ from (a) counterclockwise to (b) impact and (c) clockwise rotation
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Mathematical (Pulse-Type) Ground Motions

Large rocking structures (e.g., a rocking bridge bent) are more vul-
nerable to low-frequency coherent ground motions [e.g., Acikgoz
and DeJong (2014) and references therein]. Therefore, to assess
the seismic stability of the rocking frame, the study first considers
pulse-type excitations. Acceleration or velocity pulses often char-
acterize strong ground motions near the fault of major earthquakes

and represent their most destructive (from a structural point of
view) component (Dimitrakopoulos et al. 2009). Various math-
ematical pulses have been proposed in the literature that can capture
the long-distinct pulses of near-fault ground motions both qualita-
tively and quantitatively (Acikgoz and DeJong 2014; Kafle et al.
2011; Voyagaki et al. 2013).

Herein, the Ricker pulse (Ricker 1943, 1944) is considered. The
Ricker pulse can be defined with two parameters: the acceleration

(a)

(b)

Fig. 3. (a) Coefficient of restitution of the (b) asymmetric rocking frame for different values of H1=H; α = slenderness of the taller column (height
2H); values used to create the figure are summarized in the section “Seismic Stability of the Asymmetric Rocking Frame”

Symmetric Ricker Pulse Antisymmetric Ricker Pulse 

/g p

/
ta

n
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g
/
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n
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safe area

safe area safe area

safe area

overturning
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overturning
area

overturning
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(a) (b) 

(d)(c)

Fig. 4.Overturning plots of the symmetric and asymmetric freestanding rocking frame, under positive (a) symmetric, (b) antisymmetric; and negative
(c) symmetric, (d) antisymmetric sign of Ricker pulse excitations
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(ag) or the velocity (vg) amplitude, and the period Tg. Eq. (29)
describes the symmetric Ricker pulse (Mexican hat wavelet)

ügðtÞ ¼ ag

�
1 − 2π2t2

T2
g

�
exp

�
− 1

2

2π2t2

T2
g

�
ð29Þ

Similarly, Eq. (30) is known as the antisymmetric Ricker pulse
(Vassiliou and Makris 2011)

ügðtÞ ¼
ag
β

�
4π2t2

3T2
g
− 3

�
2πtffiffiffi
3

p
Tg

exp

�
− 1

2

4π2t2

3T2
g

�
ð30Þ

In both cases [Eqs. (29) and (30)] the value of Tg ¼ 2π=ωg is the
period that maximizes the Fourier spectrum of the corresponding
Ricker wavelet. In Eq. (30), β ¼ 1.38 enforces the function to have
a maximum equal to the acceleration amplitude ag.

The consideration of pulse-type excitations also facilitates the
use of dimensionless variables (DeJong and Dimitrakopoulos
2014; Dimitrakopoulos and DeJong 2012b) which, if appropriately
selected (Dimitrakopoulos and DeJong 2012b), offer a physically
similar description of the response. A detailed discussion of the
self-similar description of the rocking response is beyond the scope
of the present work; therefore, the interested reader is referred to
Dimitrakopoulos and DeJong (2012b). For the needs of the present
analysis, the following results are scaled simply with respect to the
rocking properties (frequency parameter p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R0

p
and slen-

derness α) of the highest column (height 2H) of the frame as in
Makris and Vassiliou (2012).

The overturning plot [e.g., Fig. 4(a)] separates the control plane
(αg=g tanα − ωp=p) into two areas, one where the structure over-
turns (after impact or without any preceding impact) and one safe
(no overturning) area. Recall that rocking structures exhibit various
overturning modes with respect to the preceding impacts (Fielder
et al. 1997). Fig. 4 shows that the structure is most vulnerable for
low-frequency acceleration pulses, although it survives even high
amplitude higher-frequency pulses. Thus, the seismic stability of
the rocking frame under pulse-type excitations is typical of rocking
systems (Dimitrakopoulos and DeJong 2012b), and in that sense,
predictable. Interestingly, the effect of the asymmetry on the overall
seismic stability of the rocking frame is marginal. Fig. 4 compares
the stability of a symmetric and an asymmetric rocking frame
that are both freestanding and subjected to the same Ricker
pulses. The columns of the asymmetric frame are of unequal height
(H1=H ¼ 0.8), but this asymmetry is almost immaterial to the over-
all stability of the frame. This is true regardless of the very different
kinematics the asymmetric frame exhibits during its rocking re-
sponse (i.e., the rigid body rotation of the cap-beam). Note that
because of the lack of symmetry, both signs of each Ricker (sym-
metric and antisymmetric) pulse excitations are examined. How-
ever, the differentiation of the response for pulse excitations of
opposite signs (e.g., the top versus bottom plots from Figs. 4 to 7)
is consistently minor; nevertheless, as the asymmetry grows, the
stability of the frame marginally decreases. In short, Fig. 4 suggests
that compared with inherent uncertainties of seismic engineering,
e.g. with regard to the earthquake loading prediction or the simpli-
fications of the proposed analysis, the effect of the different rocking
kinematics due to the unequal columns is not alarming for typical

Symmetric Ricker Pulse Antisymmetric Ricker Pulse 
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Fig. 5. Overturning plots of the asymmetric, freestanding, and hybrid rocking frame considering no fracture, under positive (a) symmetric, (b) anti-
symmetric; and negative (c) symmetric, (d) antisymmetric sign of Ricker pulse excitations
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geometries of rocking frames. Note that H1=H ¼ 0.8 is a probably
high value intentionally selected to cover even extreme cases.

To limit the amplitude of rocking rotations and enhance the seis-
mic stability of the rocking frame, this study investigates the use of
unbonded (slack) central tendons and external viscous dampers
(Fig. 1); converting the freestanding frame into a hybrid rocking
frame. As a first approach, both tendons and dampers are assumed
linear-elastic until their simultaneous brittle failure at fracture elon-
gation εf. However, an indication of the effects of a ductile tendon
behavior can be found in Makris and Zhang (2001). Before the free-
standing frame overturns, it must first achieve extensive rocking
rotations. The exact critical rocking rotation, beyond which the
structure becomes unstable, is given by the solution of the nonlinear
equation ∂φV ¼ 0. As an order of magnitude, however, and in the
case of slack tendons, the critical rotation is of the same order as the
slenderness ϕcr ¼ α, whereas for stiffer tendons, the critical rota-
tion increases. Consequently, rotations of the hybrid frame near
overturning correspond roughly to elongations of the tendon in the
order of 2.0% [assuming a tendon length equal to 8.5 m as in
Mander and Cheng (1997)]. In other words, the critical fracture
rotation of the frame is ϕf ¼ εfl=2b. Figs. 5–7 present the seismic
stability of the hybrid and freestanding (same asymmetric geom-
etry) rocking frames for different fracture elongations. In particular,
in Fig. 5, εf is high enough to ensure the system of tendons and
dampers stays within the linear-elastic range until overturning,
whereas in Figs. 6 and 7, the fracture elongation is taken as εf ¼
2.0 and 1.0% respectively. The comparison of Figs. 5–7 unveils the
sensitivity of the seismic performance/stability of the rocking frame
to the assumed fracture elongation (the only difference between

Figs. 5 to 7). In general, the higher the fracture elongation, the more
drastic the enhancement of the stability is.

Interestingly, however, the response of the hybrid frame is not
always better compared with the freestanding frame. Neither is the
stability always enhanced the higher the fracture elongation be-
comes. Similar to the anchored rocking block (Dimitrakopoulos
and DeJong 2012a), countertrends also appear where the response
of the hybrid frame is worse than that of the corresponding free-
standing frame. Figs. 4 and 7 illustrate such combinations, wherein
the hybrid frame overturns when the freestanding frame survives
the excitation; for instance, when αg=g tanα ≈ 3 ÷ 4, ωp=p ≈
2 ÷ 3, and the excitation is an antisymmetric Ricker pulse (Fig. 7).
These peculiar response characteristics stem from the frail (highly
nonlinear) nature of rocking dynamics, and in that sense are
anticipated.

Historic Excitations

The present section extends the seismic stability analysis of the
same asymmetric rocking frame, examining historic excitations
regardless of whether they contain distinguishable pulses or not.
In particular, a well-known set of historic ground motions scaled
to yield a probability of exceedance of 2% in 50 years (SAC
1997) is examined.

Figs. 8 and 9 compare the response of the freestanding and
the hybrid asymmetric rocking frame, in terms of time-history and
peak response, respectively. For the hybrid frame, a fracture elon-
gation of εf ¼ 1.0% is assumed. Although the examined ground
motions are scaled to the maximum credible earthquake level,

Symmetric Ricker Pulse Antisymmetric Ricker Pulse
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Fig. 6. Overturning plots of the asymmetric, freestanding, and hybrid rocking frame for 2.0% fracture elongation under positive (a) symmetric,
(b) antisymmetric; and negative (c) symmetric, (d) antisymmetric sign of Ricker pulse excitations
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the freestanding rocking frame survives most of them, and the per-
tinent hybrid frame survives all ground motions listed in Table 1.
Recall that according to the assumptions of the present analysis,
when the structure survives the motion (i.e., does not overturn),
it eventually re-centers, and hence there is no permanent rotation
and/or expected damage, which is the premise of the damage-
avoidance design (Mander and Cheng 1997).

Interestingly, the most destructive among the historic re-
cords examined are SE23, SE24 from the 1992 Erzican, Turkey

earthquake. Again, this is due to the distinguishable dominant
impulsive motions these records contain.

On the other hand, although the hybrid rocking frame survives
all excitations examined herein (Fig. 9), it is precarious to derive
general conclusions for other excitations. This is particularly true
for noncoherent seismic excitations because the rocking response
becomes less orderly (Acikgoz and DeJong 2014). Therefore, a
more general answer regarding the seismic reliability of rocking
behavior/structures to noncoherent excitations should be couched
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Fig. 8. Seismic response of an asymmetric rocking frame: (a) dimensionless rocking rotation; and (b) dimensionless angular velocity for (c) different
earthquake records
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Fig. 7. Overturning plots of the asymmetric, freestanding, and hybrid, rocking frame for 1.0% fracture elongation under positive (a) symmetric,
(b) antisymmetric; and negative (c) symmetric, (d) antisymmetric sign of Ricker pulse excitations
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in probabilistic methods. This task, however, is beyond the scope
of the present paper.

Conclusions

This study investigates the seismic response of a planar rocking
frame as a potential (alternative) seismic design paradigm. Treating
the structure as a generalized single-degree-of-freedom system, it
formulates the equations of motion, and sheds light on the impact
mechanism.

In particular, the paper examines the case of asymmetric frame
geometry (columns of unequal height) and compares the seismic
stability of the freestanding with the hybrid (supplemented with
additional restoring and damping capacity) rocking frame. Both
mathematical pulse-type ground motions as well as historic earth-
quake records are examined.

The analysis shows that despite the very different kinematics
of the symmetric and the asymmetric frame geometry, the overall
stability under pulse-type excitations is unaffected, at least for the
geometries examined. This counterintuitive finding is reassuring
regarding the potential merits of the rocking frame as a high-
performance design solution. The results also unveil the dominant
role of the fracture elongation of the, assumed elastic-brittle, sup-
plemental tendons and dampers, on the behavior of the hybrid
frame. The seismic stability is sensitive to the fracture elongation
and, in general, the higher the fracture elongation, the more

drastic the improvement of the seismic performance of the rocking
frame.

Finally, the study shows that the hybrid frame would survive
all historic earthquake excitations examined, even though they
are scaled to the maximum credible earthquake level. Thus, the
paper confirms the ample seismic stability of the (planar) hybrid
rocking frame, and verifies its promising high-performance seismic
behavior.

Appendix I. Strain Energy Expression

Appendix I provides the strain energy expression due to the elon-
gation of the tendons for both large and small rotations. Consider-
ing the definition of the rocking rotations ϕ, and ϕ1 [Eq. (12)], the
strain energy of the tendons [Eq. (9)] can be written as

V tend ¼ 4kb2
�
cos2

φBC

4

��
2∓ sin

�
α� φ� φBC

2

�

∓ sin

�
α1 � φCD � φBC

2

��
ð31Þ

For small rotations the tendon elongation expressions sim-
plify to

δlA ¼ δlB ¼ bϕ ð32Þ
and

Table 1. Earthquake Records (Probability of Exceedance of 2% in 50 Years) (Data from SAC 1997)

Number Record Magnitude Scale factor DT (s) Duration (s) PGA (cm=s2)

SE21 1992 Mendocino 7.1 0.98 0.02 59.98 741.13
SE22 1992 Mendocino 7.1 0.98 0.02 59.98 476.22
SE23 1992 Erzincan 6.7 1.27 0.005 20.775 593.60
SE24 1992 Erzincan 6.7 1.27 0.005 20.775 529.06
SE25 1949 Olympia 6.5 4.35 0.02 79.98 878.23
SE26 1949 Olympia 6.5 4.35 0.02 79.98 805.68
SE27 1965 Seattle 7.1 10.04 0.02 81.82 1,722.40
SE28 1965 Seattle 7.1 10.04 0.02 81.82 1,364.70
SE29 1985 Valparaiso 8.0 2.9 0.025 99.975 1,605.50
SE30 1985 Valparaiso 8.0 2.9 0.025 99.975 1,543.50
SE31 1985 Valparaiso 8.0 3.96 0.025 99.975 1,246.20
SE32 1985 Valparaiso 8.0 3.96 0.025 99.975 884.43
SE35 1978 Miyagi-oki 7.4 1.78 0.02 79.98 595.07
SE36 1978 Miyagi-oki 7.4 1.78 0.02 79.98 768.62

0
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0.9
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m
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/

Fig. 9. Maximum rotations (in dimensionless terms) for all the earthquake records of Table 1 for both directions of the excitation (positive and
negative)
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δlD ¼ δlC ¼ bϕ1 ð33Þ

For the cases considered in this paper, the small rotations
assumption offers a dependable approximation (Fig. 10) of the
stiffness

V tendðlinÞ ¼ 2kb2ð1þ h̄2Þ
�
− π
2
� αþ φ

�
2

ð34Þ

In Fig. 10, Klin is the partial derivative of the strain energy with
respect to the angle φ

Klin ¼ ∂V tendðlinÞ=∂φ ¼ 4kb2ð1þ h̄2Þ
�
−π
2
� αþ φ

�
ð35Þ

Appendix II. General Closed-Form Expression for
the Coefficient of Restitution of the Asymmetric
Rocking Frame

This appendix offers the general closed-form expression for the
coefficient of restitution of the asymmetric rocking frame. In par-
ticular, the coefficient of restitution η is calculated by the solution
of the system of Eqs. (23)–(27) as

η ¼ f½2b̄ðh̄ − 1Þ∓1�ð�a1 þ a2 − a3∓a4Þ � b̄ðh̄ − 1Þ × ða6 − a5Þ þ ½�b̄ðh̄ − 1Þ − 1
2
�ða7 þ a8Þ þ ½b̄ðh̄ − 1Þ∓ 1

2
h̄�ða9 þ a10Þg

f½2b̄ðh̄ − 1Þ∓1�ð�a1 − a2 þ a3∓a4Þ � b̄ð1 − h̄Þ × ða5 þ a6Þ þ ½�b̄ðh̄ − 1Þ − 1
2
�ða7 − a8Þ � ½b̄ðh̄ − 1Þ∓ 1

2
h̄�ða9 − a10Þg

ð36Þ

where

a1 ¼ ðmAB þmCD þ 2mBCÞH2 a2 ¼ 2mBCb̄ð1 − h̄ÞHh a3 ¼ �mABb2 �mCDb2h̄�mBCb2ð1þ h̄Þ

a4 ¼ 2mBCb2b̄ðh̄ − 1Þ a5 ¼
�
IGAB þ IGCDh̄þmABH2 þmCDHð2H −H1Þ þ 2mBCHð2H þ hÞ − 2mBCbb̄

�
L
2
� b

�
ðh̄ − 1Þ

�

a6 ¼
�
�IGBC2b̄ðh̄ − 1Þ þmABb2 �mCDbh̄ðL� bÞ∓2mBCb̄hð2H þ hÞð1 − h̄Þ �mBCb

�
L
2
� b

�
ðh̄þ 1Þ

�
a7 ¼ IGAB −mABH2

a8 ¼ mABb2 a9 ¼ h̄IGCD −mCDHH1 a10 ¼ mCDb2h̄ h̄ ¼ H
H1

b̄ ¼ b
L

ð37Þ

Again, in Eqs. (31)–(37), the upper sign denotes the counter-
clockwise (positive) rotation, and the lower sign the clockwise
(negative) rotation.
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