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Revisiting the rocking block: closed-form
solutions and similarity laws
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In this paper, the dynamic response of the rocking block subjected to base excitation
is revisited. The goal is to offer new closed-form solutions and original similarity
laws that shed light on the fundamental aspects of the rocking block. The focus
is on the transient dynamics of the rocking block under finite-duration excitations.
An alternative way to describe the response of the rocking block, informative of the
behaviour of rocking structures under excitations of different intensity, is offered. In the
process, limitations of standard dimensional analysis, related to the orientations of the
involved physical quantities, are revealed. The proposed dimensionless and orientationless
groups condense the response and offer a lucid depiction of the rocking phenomenon.
When expressed in the appropriate dimensionless–orientationless groups, the rocking
response becomes perfectly self-similar for slender blocks (within the small rotations
range) and practically self-similar for non-slender blocks (larger rotations). Using this
formulation, the nonlinear and non-smooth rocking response to pulse-type ground motion
can be directly determined, and need only be scaled by the intensity and frequency of
the excitation.

Keywords: closed-form solutions; rocking; self-similarity; earthquake engineering;
orientational analysis

1. Introduction

Rocking motion is increasingly being used to isolate structures from large stresses
induced by earthquakes. These applications, in addition to intriguing non-smooth
dynamic characteristics, have motivated a proliferation of literature on rocking
structures (see Dimitrakopoulos & DeJong in press, and references therein). In
this context, this paper offers an original, physically consistent description of the
rocking block that elucidates the physical mechanism behind the dynamics of
rocking structures under simple pulse excitations.
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A major challenge of nonlinear structural dynamics is no longer the
response analysis of a specific structural configuration, but rather the generic
prediction of behaviour for a wide class of configurations. In the field of
earthquake engineering, this challenge is exemplified by the definition of
response spectra for nonlinear systems. To address this challenge, Makris &
Black (2004) and Makris & Psychogios (2006) implemented formal dimensional
analysis and showed that the response of yielding structures under pulse-
type excitations is self-similar. Dimitrakopoulos et al. (2009a) extended the
same approach to excitations without distinct pulses. The property of self-
similarity has also been exploited for elastic or inelastic structures with pounding
(Dimitrakopoulos et al. 2009b, 2010). Self-similarity is a symmetry/invariance
with respect to a scale transformation of unique importance when ordering
nonlinear phenomena (Sedov 1992; Barenblatt 1996). In structural dynamics
(and earthquake engineering), self-similarity has the immediate consequence
that response spectra become indifferent to the intensity and the frequency
content of the excitation, even if the structural response is nonlinear and/or
non-smooth.

The rocking response of a rigid block has been studied, in various scientific
fields, for over a century (Augusti & Sinopoli 1992). The significant amount
of analytical research focused on the steady-state response under harmonic
loading (Hogan 1990) probably stems from the concept that a constant frequency
excitation can cause resonance. However, constant frequency rocking resonance
is impossible because the ‘effective’ frequency changes with rocking amplitude
(DeJong et al. 2008). Furthermore, harmonic ground motions that could cause
rocking resonance would have to have a precise time-varying frequency, and are
thus extremely unlikely (DeJong 2012). Thus, from an earthquake engineering
perspective, the transient rocking response to a finite-duration base excitation is
of primary importance, rather than the steady-state response to harmonic loading
(Zhang & Makris 2001).

This study comprises two parts. First, building on the work of Anooshehpoor
et al. (1999) and Zhang & Makris (2001), among others, the overturning of the
rocking block under a simple trigonometric pulse is considered and original closed-
form solutions are presented. Second, the closed-form solutions clarify limitations
of standard dimensional analysis (Barenblatt 1996), which does not incorporate
the orientations of the involved physical quantities. However, the adoption of
orientational analysis (Siano 1985) to supplement dimensional analysis enables
identification of the self-similar rocking response.

2. Problem statement

During rocking of a single rigid block, continuous impact-free motion is
interrupted by impacts at the pivot points. Hence, rocking is by definition a
problem of non-smooth dynamics (Brogliato 1999; Glocker 2001). A complete
description of a non-smooth dynamics problem requires, apart from the equations
of motion (EOM), an appropriate treatment of impact. In particular, the
problem of a rigid block rocking under a base excitation (figure 1) can be stated
as follows:
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Figure 1. Geometry of the rigid rocking block under a pulse-type horizontal ground excitation.

(a) Equations of motion

Moment equilibrium around the rocking pivot point gives

I0q̈ + mg R sin(a − q) = −mügR cos(a − q), q > 0

I0q̈ + mg R sin(−a − q) = −mügR cos(−a − q), q < 0,

}
(2.1)

where I0 is the moment of inertia with respect to the pivot point, m is the mass of
the block, g is the gravity acceleration, R is the half-diagonal (figure 1), a is the
angle of slenderness, üg is the horizontal ground acceleration and q is the response
rotation. By geometry tan a = b/h, where 2b and 2h are the width and height
of the block, respectively. Rocking initiates when üg ≥ ag,min = g tan a. Dividing
equation (2.1) by I0 yields

q̈

p2
= − sin[a sgn(q) − q] − üg

g
cos[a sgn(q) − q], (2.2)

where p = √
3g/4R is the frequency parameter of the (rectangular) rocking block

and sgn(q) is the standard sign function with: sgn(q = 0) = 0, sgn(q < 0) = −1 and
sgn(q > 0) = 1. Equation (2.2) is a set of nonlinear ordinary differential equations
that depend on the sign of the response rotation q.

(b) Treatment of impact

Impact takes place when the rotation changes sign at q = 0. There are several
ways to treat impact (see Augusti & Sinopoli 1992; Prieto et al. 2004; Yilmaz et al.
2009 and references therein). In most cases, impact is described by a coefficient of
restitution that relates the post-impact (angular) velocity q̇+ to the pre-impact
velocity q̇−

q̇+ = hq̇−. (2.3)

One way to estimate the coefficient of restitution is by equating the moment of
momentum with respect to the forthcoming pivot point, just before and just after
impact (Housner 1963).
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The resulting coefficient of restitution for a rigid rectangular block (figure 1)
is (Housner 1963)

h = 1 − 3
2

sin2 a. (2.4)

However, for equation (2.4) to be valid, it is implicitly assumed that the block
is slender enough, and the coefficient of friction high enough, to prevent other
impact behaviours such as bouncing or sliding (Contento & Di Egidio 2009). In
reality, it is clear that the coefficient of restitution is not a function of the geometry
solely (see Prieto et al. 2004; ElGawady et al. 2010 and references therein), and
hence equation (2.4) should be considered as a theoretical approximation of the
coefficient of restitution needed to sustain pure rocking motion. For this reason,
the coefficient of restitution is treated, in this study, as an independent parameter
in the formulation of the rocking problem, as in Hogan (1989). Later in this paper,
the influence of the coefficient of restitution on the response is analysed further.

3. Overturning of the rocking block: closed-form solutions

The overturning of a slender block under trigonometric pulses has been
investigated in several studies, but the derivations herein primarily build on the
work of Anooshehpoor et al. (1999) and Zhang & Makris (2001). In particular,
the aim of this section is to derive closed-form solutions that completely describe
the overturning of the rocking block under sine pulse excitations. In effect, this
requires solving the transcendental equation that yields the time of impact.

For slender blocks (small a), the nonlinear EOM equation (2.2) can be
linearized as

q̈ − p2q + p2a sgn(q) = −p2 üg

g
. (3.1)

Equation (3.1) is useful because simple mathematical excitations allow a closed-
form analytical solution for the equation of motion (Housner 1963). Under a
simple trigonometric excitation

q̈ − p2q + p2a sgn(q) =
⎧⎨
⎩−p2 ag

g
sin(ugt + j), for t ≤ Tex

0, for t > Tex,
(3.2)

where ag and ug = 2p/Tp (figure 1) are the acceleration amplitude and the
angular frequency of the pulse, a is the angle of slenderness and p is the frequency
parameter. The time instant when the excitation expires is Tex = (2p − j)/ug,
and j is the phase when rocking initiates. Note that the phase angle defines t = 0
as the instant that rocking initiates, not the instant that the pulse initiates. For
a sine pulse excitation

sin j = ag
ag

.= 1
a

, cos j = cos
(

arcsin
(

1
a

))
=

√
1 −

(
1
a

)2

, j = arcsin
(

1
a

)
.

(3.3)
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The solution of equation (3.2) for the forced rocking stage t ≤ Tex yields

q(t)
a

= sgn(q) + a
u2 + 1

sin(ut + j) + A
a

e−t + B
a

et

and
q̇(t)
pa

= B
a

et − A
a

e−t + au

u2 + 1
cos(ut + j).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.4)

The pertinent solutions for the free rocking stage t > Tex phase are

q(t)
a

= sgn(q) + A
a

e−t + B
a

et

and
q̇(t)
pa

= B
a

et − A
a

e−t,

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

where the following dimensionless groups are used

u
.= ug

p
, t

.= pt, and a .= ag

ga
. (3.6)

The overturning problem of the rocking block can be broken down (figure 2) to the
following cases (Anooshehpoor et al. 1999): overturning without impact (case 2)
or overturning with impact taking place before (case 1.1) or after (case 1.2) the
end of the excitation. The constants A and B depend on the initial conditions of
each response stage (figure 2) and the time instant the stage initiates.

For zero initial conditions q(t = 0) = 0, q̇(t = 0) = 0 (and for a sine excitation)
the constants A = A0 and B = B0 simplify to

A0 = a

2

(
u2 + u

√
a2 − 1

u2 + 1

)
, and B0 = a

2

(
u2 − u

√
a2 − 1

u2 + 1

)
. (3.7)

Following figure 2, each possible response sequence will be analysed separately,
starting from the simplest case (case 2) and moving on to the most complex
one (case 1.1). In all cases (of figure 2), it is assumed that under the minimum
amplitude ground acceleration which will cause overturning for a given pulse
duration, overturning takes place during the free rocking stage when the velocity
tends to a minimum for large time t (Zhang & Makris 2001):

q̈(t∞) = 0 ⇒ B = 0. (3.8)

Note that B = 0 defines the pertinent unstable manifold of the rocking block
(Hogan 1989).

The following notation will be used in the sections that follow

A∗
0 = 2

A0

a
= u2 + u

√
a2 − 1

u2 + 1
, B∗

0 = 2
B0

a
= u2 − u

√
a2 − 1

u2 + 1
, C ∗

0 = 2a
u2 + 1

,

D∗
0 =

(
A∗

0 − u

2
C ∗

0 epTex
) (

B∗
0 + u

2
C ∗

0 e−pTex
)

(3.9)

= u

u2 + 1

(
u2 − 2a2 + 1 +

(√
a2 − 1 + u

)
ae−pTex +

(√
a2 − 1 − u

)
aepTex

)
.
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Figure 2. Top: possible response sequences of a rocking block excited by a sine pulse, including
initial conditions (A, B) and the sign of rocking rotation q for each response stage. Bottom: sample
time-history response for each case.

(a) Overturning case 2

In the case of overturning without impact, the overturning condition becomes

Bex0 = 0 ⇒ qex0

a
+ q̇ex0

pa
+ 1 = 0 ⇒ B∗

0 e
pTex + u

2
C ∗

0 = 0 ⇔

and u =
√

a2 − 1 − ae−pTex ⇔ u =
√

a2 − 1 − ae− 2p−arcsin(1/a)
u .

⎫⎪⎬
⎪⎭ (3.10)
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As expected, the overturning condition equation (3.10) does not depend on the
coefficient of restitution h, but only on the dimensionless groups a and u. The
difference between equation (3.10) and the pertinent equations of Anooshehpoor
et al. (1999) and Zhang & Makris (2001) is that exponential functions are used
here instead of hyperbolic trigonometric functions. The choice of exponential
functions might be trivial in the case of equation (3.10) but turns out to be
important in cases 1.1 and 1.2, where a solution to transcendental equations
is sought.

(b) Overturning case 1.2

At the end of the excitation and assuming no impact has taken place (figure 2),
the rotation and the velocity are

qex0

a
= 1

2
A∗

0e
−pTex + 1

2
B∗

0 e
pTex − 1,

q̇ex0

pa
= 1

2
(B∗

0 e
pTex − A∗

0e
−pTex + C ∗

0 u). (3.11)

The time instant impact occurs ti2 = pti2 (within case 1.2) can be determined
from

q(ti2) = 0 ⇒
(
A∗

0 − u

2
C ∗

0 epTex
)

e−ti2 +
(
B∗

0 + u

2
C ∗

0 e−pTex
)

eti2 − 2 = 0. (3.12)

Extending previous works (Anooshehpoor et al. 1999; Zhang & Makris 2001), the
time of impact can be calculated directly and inserted in the pertinent overturning
condition (equation (3.18)). The transcendental equation (3.12) can be solved
exactly using an appropriate change of variables (see appendix A). The negative
solution of equation (3.12) lacks physical meaning. The time of impact is given
by the positive solution

ti2 = ln

(
1 + √

1 − D∗
0

B∗
0 + u

2 C ∗
0 e−pTex

)
. (3.13)

The pertinent pre-impact velocity q̇i2 is given, in dimensionless terms, by

2
q̇i2

pa
=

(
B∗

0 + u

2
C ∗

0 e−pTex
)

eti2 −
(
A∗

0 − u

2
C ∗

0 epTex
)

e−ti2 . (3.14)

After substitution of the time of impact

q̇i2

pa
= √

1 − D∗
0 . (3.15)

Finally, after impact it is assumed that the block for sufficiently large time,
overturns. Thus, the overturning condition simplifies to (figure 2)

Bi2 = 0, (3.16)

or

h
q̇i2

pa
= 1 ⇒

(
B∗

0 + u

2
C ∗

0 e−pTex
)

eti2 −
(
A∗

0 − u

2
C ∗

0 epTex
)

e−ti2 = 2
h
, (3.17)
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which, after some algebra, yields

1 −
[
A∗

0B
∗
0 −

(u

2
C ∗

0

)2 + u

2
C ∗

0

(
A∗

0e
−pTex − B∗

0 e
pTex

)] = 1
h2

. (3.18)

Equation (3.18) is the exact expression for the overturning envelope when impact
takes place after the excitation has ceased (case 1.2 of figure 2).

(c) Overturning case 1.1

When impact takes place before the end of the excitation (figure 2), the
associated overturning condition is

Bex1 = 0, (3.19)

which yields

2h
q̇i1

pa
+ C ∗

0 [ue−pTex eti1 − u cos(uti1 + j) − sin(uti1 + j)] = 2, (3.20)

where q̇i1 is the unknown pre-impact velocity and ti1 is the unknown pertinent
time instant. The (dimensionless) time of impact ti1 = pti1 can be determined by
solving numerically the transcendental equation

q(ti1) = 0 ⇒ A∗
0e

−ti1 + B∗
0 e

ti1 + C ∗
0 sin(uti1 + j) − 2 = 0. (3.21)

By substituting ti1 into equation (3.22), the pre-impact velocity can be calculated

2
q̇(ti)
pa

= B∗
0 e

ti − A∗
0e

−ti + C ∗
0 u cos(uti + j). (3.22)

In figure 3, the ‘numerical’ overturning curves for case 1.1 are plotted using
equations (3.20) and (3.21).

Alternatively, in order to capture the overturning according to case 1.1 with a
closed-form formula, a solution to the transcendental equation (3.21) is needed.
The change of variables used in the previous case (case 1.2) cannot be used
directly to solve equation (3.21) because the non-exponential term is not constant.
Furthermore, other dependable approaches (Mylonakis & Voyagaki 2006) for
solving analytically similar transcendental equations are not applicable in this
case.

Instead, a novel approach for approximating analytically the solution of the
transcendental equation (3.21), i.e. the dimensionless impact time t̂i1 (equation
(3.21)), is proposed herein. The basic assumption, verified by numerical analyses,
is that the time the block takes to return to its rest position (impact) after the
rocking initiates is approximately 1/p, which means that

t0
i1 	 1

p
⇒ t0

i1 = pt0
i1 = 1. (3.23)

Hence, in the following, the non-constant trigonometric function sin(ut + j) is
approximated locally (around t0

i1 = 1) with an ad hoc function ke−t + let of the
two exponential functions e−t, et. For this purpose, the sine function is first
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 on October 18, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


2302 E. G. Dimitrakopoulos and M. J. DeJong

2 4 6 8 100

1

2

3

4

5

a g
/g

a

h = 0.90

ti1 = Tex

h = 0.95
h = 0.85

h = 0.80

wg /p

2p /wg

ag

Figure 3. Comparison of numerical (black line) (equations (3.20) and (3.28)) and semi-analytical
(blue line) (equation (3.30)) results for the curve that delineates overturning for case 1.1. (Online
version in colour.)

expanded in series at t = 1, keeping up to second-order terms

sin(ut + j) 	 sin(u + j) + u cos(u + j)(t − 1) − u2

2
sin(u + j)(t − 1)2 (3.24)

The ad hoc function ke−t + let is also expanded in series at t = 1 keeping up to
second-order terms

ke−t + let 	
(k

e
+ le

)
+

(
le − k

e

)
(t − 1) +

(
k

2e
+ le

2

)
(t − 1)2. (3.25)

Coefficients k and l are determined by equating the two polynomial
approximations

k = −eu

2
[cos(u + j) + u sin(u + j)], l = u

2e
[cos(u + j) − u sin(u + j)].

(3.26)
Thus, the trigonometric function sin(ut + j) can be approximated, at around
t0

i1 = 1, as

sin(ut + j) = (u2 + 1) sin(u + j) + ke−t + let. (3.27)

Appendix B of the electronic supplementary material (figure S1) illustrates
the accuracy of the proposed approximation for different u = ug/p ratios. The
approximation is satisfactory (around t = 1) for intermediate values of u ≈ 5
and excellent for small values of u < 2. For u > 5, the block does not overturn
according to case 1.1 and hence there is no need to consider higher values.
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Substituting equation (3.27) into equation (3.21) yields

q(ti1) = 0 ⇒ (A∗
0 + C ∗

0 k)e−t + (B∗
0 + C ∗

0 l)et + 2[a sin(u + j) − 1] = 0 (3.28)

which can be solved exactly (see appendix A). Keeping only the positive solution
returns

t̂i1 = ln

(
1 − a sin(u + j) + √[a sin(u + j) − 1]2 − (A∗

0 + C ∗
0 k)(B∗

0 + C ∗
0 l)

B∗
0 + C ∗

0 l

)
,

(3.29)
where the ‘hat’ denotes approximation. Using equation (3.29), the overturning
condition for case 1.1 can be simplified further to

h[B∗
0 e

t̂i1 − A∗
0e

−t̂i1 + C ∗
0 u cos(ut̂i1 + j)]

+ C ∗
0 [ue−pTexet̂i1 − u cos(ut̂i1 + j) − sin(ut̂i1 + j)] = 2. (3.30)

Figure 3 offers the comparison of these two approaches, the former of which is
named ‘numerical’ (equations (3.20) and (3.21)) and the latter ‘semi-analytical’
(equation (3.30)). The minimum solution provided by equation (3.30) coincides
with the pertinent solution of equations (3.20) and (3.21) verifying the accuracy
of the approximation (equation (3.29)). This approximation (equation (3.29)) is
an original contribution that simplifies further the description of the overturning
behaviour of the rocking block.

(d) Limit ti = pTex

The two cases: case 1.1 and case 1.2 are distinguished by the limit: ti1 = ti2 =
pTex or equivalently: ti1 = ti2 = Tex. This limit is calculated by equating the time
of impact (either from equation (3.12) or from equation (3.21)) with the time
instant the excitation ends

1 +
√

1 − A∗
0B

∗
0 = B∗

0 e
pTex ⇒ 1 + u2 +

√
1 + (a2 + 1)u2 =

(
u2 − u

√
a2 − 1

)
epTex .

(3.31)
Equation (3.31) is also offered by Anooshehpoor et al. (1999).

In summary, in the case of a sine pulse excitation, and under the assumptions
aforementioned, the overturning of the rocking block can be captured completely
on the control space (a, u, h) with the four closed-form expressions: equations
((3.10), (3.18), (3.30)) (or equations (3.20) and (3.21) instead) and equation (3.31)
as in figure 4.

The area of the control space enclosed by the two curves defined by equation
(3.18) for case 1.1 and by equation (3.30) (or equivalently by equations (3.20) and
(3.21)) for case 1.2 corresponds to overturning after one impact. The area above
the curve defined by equation (3.10) corresponds to overturning without impact.
The remaining area of the control space, the ‘safe’ area, is divided by the ti1 =
ti2 = pTex curve into two regions: the region below the curve where the first impact
occurs before the end of the excitation, and the region above the curve where the
first impact occurs after the end of the excitation. This simplifies the rocking
problem further, as will be illustrated later. The semi-analytical overturning
plots (figure 4) are in excellent agreement with the pertinent numerical ones
(Dimitrakopoulos & DeJong in press).
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Figure 4. Overturning plots for different values of h calculated using the closed-form expressions
in equations (3.10), (3.18), (3.30) (or equations (3.20) and (3.21) instead) and equation (3.31).

Thus, closed-form solutions that completely describe the overturning of the
rocking block are provided. The procedure illustrated for a sine pulse excitation
can be mimicked for other trigonometric pulses. For excitations with more
loading cycles, more overturning sequences would arise and the analysis would
lengthen rapidly.

4. Slender rocking block: similarity laws

While §3 dealt with the overturning of the rocking block, this section focuses on
the rocking response of the block when it survives the motion. Hinging upon the
analytical solutions presented in §3, the aim of this section is to offer a useful
self-similar description of the rocking block and bring forward a shortcoming of
standard dimensional analysis.

As a first approach, the rocking rotation can be normalized with respect to
the slenderness of the block a (figure 1) as in equation (3.4). Following this
approach, differentiation with respect to the dimensionless time t = pt yields
the dimensionless angular velocity q̇/pa, not just q̇/p. While this formulation
(equation (3.4)) clarifies the fundamental behaviour of rocking systems, a more
direct scaling of the rocking response to the excitation intensity is sought. To this
end, an alternative approach is to normalize the response with meaningful scales
of the excitation rather than with characteristics of the block (e.g. slenderness a).
Multiplying equation (3.5) with the dimensionless group 1/a = ga/ag yields

gq(t)
ag

= 1
a

sgn(q) + 1
u2 + 1

sin(ut + j) + g
ag

Ae−t + g
ag

Bet

and
gq̇(t)
pag

= g
ag

Bet − g
ag

Ae−t + u

u2 + 1
cos(ut + j).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.1)
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The proposed dimensionless groups (equation (4.1)) hinge upon the
characteristics of a pulse-type excitation, ag and ug = 2p/Tp.

It is interesting to note, that neither the dimensionless groups of equation
(3.4) nor the dimensionless groups of equation (4.1) can be derived from formal
dimensional analysis. In particular, the maximum rotation qmax of the rocking
block can be written as a function of the general form

qmax = f
(

a, p,
ag

g
, ug , h

)
. (4.2)

Equation (3.31) contains six characteristic variables that involve only one
reference dimension, time [T ]. According to Buckingham’s ‘P’ theorem
(Buckingham 1914), the number of independent dimensionless P-products is five

qmax = f

(
u,

ag

g
, a, h

)
, (4.3)

where the only dimensionless term arising from dimensional analysis is the ratio
u = ug/p. According to dimensional analysis, dimensionless quantities cannot be
combined. Hence, formal dimensional analysis yields very little benefit for the
rocking problem, because the already dimensionless groups of equation (4.3)
cannot be combined to yield the dimensionless groups of equation (3.4) or
equation (4.1).

However, if one distinguishes the notion of dimension to that of orientation
(see Siano 1985; Araneda 1996), then the groups derived from Buckingham’s
theorem are dimensionless but are not orientationless. One can supplement
dimensional analysis taking into account the orientations (Siano 1985) of the
involved characteristic variables and demanding that the physical equations
be both dimensionally and orientationally homogeneous. For instance, the
maximum rocking rotation qmax and the slenderness a are dimensionless but not
orientationless, in contrast with the coefficient of restitution h which is both
dimensionless and orientationless.

At this point, it is necessary to introduce multiplication rules for orientations.
Let lx , ly and lz denote the unit orientations along the x-, y- and z-axis,
respectively, and let l0 be the identity element (no orientation). The following
rules apply (Siano 1985)

lx � l−1
x , l2x � l0, (4.4)

where � denotes orientational equality. Similar rules hold for orientations y, z
and the orientationless element l0. In addition

l2n+1
x � lx , l2n

x � l0, (4.5)

for any integer n. The multiplication rules of the orientational symbols (lx , ly , lz
and l0) are summarized in table 1.

Following the reasoning of orientational analysis, an angle q in the x–y plane
is lz oriented. Siano (1985) demonstrated this point for a small angle q : tan q =
sin q/ cos q � lz/l0 � lz, because sin q 	 q � lz , and cos q 	 l � 10. The orientation
of trigonometric functions can also be derived by using the pertinent power
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Table 1. Multiplication table of the unit orientations.

l0 lx ly lz

l0 l0 lx ly lz
lx lx l0 lz ly
ly ly lz l0 lx
lz lz ly lx l0

expansion series, for example

cos q = 1︸︷︷︸
l0

− q2

2!︸︷︷︸
l0

+ q4

4!︸︷︷︸
l0

− q6

6!︸︷︷︸
l0

· · · ⇒ cos q � l0. (4.6)

Accordingly, the orientations of the characteristic variables of the rocking block
problem can now be determined

q � lz , u = ug

p
� l0

l0
� l0,

ag

g
� lx

ly
� lz , a � lz , h � l0. (4.7)

Note that in figure 1, orientation z is perpendicular to the page. Furthermore,
according to orientational analysis (Siano 1985), angular frequency is
orientationless, hence the frequency parameter p is orientationless. Orientational
homogeneity of equation (4.3) requires

qmax = f
(

u,
ag

a
, a, h

)
→ lz � l 31

0 l 32
z l 33

z l 34
0 ⇒ lz � l 32+33

z , (4.8)

which yields
32 + 33 = odd number. (4.9)

Orientational analysis, as proposed by Siano (1985), does not yield a definite
value for the unknown exponents 32 and 33. Instead, it provides constraints
(e.g. equation (4.9)) which can be useful in combination with physical reasoning
or mathematical derivation. In our case, it can be used to confirm that
the dimensionless–orientationless groups derived from analytical manipulations
may indeed provide a self-similar response. Choosing 32 = 1 and 33 = −2, the
dimensionless (and orientationless) groups of equation (3.4) are retrieved

q

a
= f

(
ug

p
,
ag

ag
, pt, h

)
= f(u, a, t, h). (4.10)

Alternatively, choosing 32 = −2 and 33 = 1, the dimensionless (and orientationless)
groups of equation (4.1) are found

qg
ag

= f

(
ug

p
,

ag
ag

, pt, h

)
= f

(
u,

1
a

, t, h

)
. (4.11)

The main advantage of the proposed dimensionless–orientationless approach is
that it brings forward the property of self-similarity in the rocking response in
a general method, for any excitation that can be described using amplitude ag
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Figure 5. The response (equation (3.3)) of two rocking blocks of different shape and size. The
dimensionless–orientationless terms that describe the behaviour are equal in both cases. (Online
version in colour.)

and frequency ug, which is not achieved by the previous closed-form solutions.
Figure 5 plots the response of two rigid blocks subjected to one-cosine acceleration
pulses of different amplitude ag and frequency ug = 2p/Tg. The blocks differ
in size (p) and shape (a). However, the associated dimensionless–orientationless
groups, including the coefficient of restitution (h = 0.85), are equal in both cases.
The response time histories are calculated numerically from the linearized EOM
(equation (3.2)) and are presented in dimensional terms.

When the same response curves are plotted in the proposed dimensionless
terms, they collapse to a single ‘master’ curve (figure 6). In other words, the
analysis shows that the critical parameters for the rocking response of a rigid
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Figure 6. Self-similar response (small-angle approximation): when the response is presented in the
proposed dimensionless–orientationless terms, the two cases of figure 5 collapse to a single curve.
(Online version in colour.)

block, for a given coefficient of restitution h, are the dimensionless–orientationless
slenderness 1/a = ga/ag and the frequency ratio u = ug/p. These parameters alone
are sufficient to define a unique response.

(a) A scale law for the coefficient of restitution

While dimensional and orientational analysis have significantly reduced the
parameters involved, the dependence on the coefficient of restitution prevents
the production of a single curve that defines overturning or maximum response.
This section investigates the possibility of simplifying the dependence on the
coefficient of restitution by deriving an appropriate scaling relation. Figure 7
presents numerical results (equation (3.3)) for the rocking rotation and angular
velocity for fixed values of u = ug/p and 1/a = ga/ag but a varying coefficient
of restitution h. As the coefficient of restitution decreases, the effective period
becomes shorter and the maximum response (rotation and angular velocity) lower.
This is a damping mechanism that is well documented (Priestley et al. 1978).

Similarly, figure 8 plots rocking spectra (solid lines), obtained from the
integration of the linear equation of motion (equation (3.2)), in the proposed
dimensionless–orientationless terms for coefficients of restitution ranging from
h = 0.80 to 0.96 (intervals of 0.02). Both figures 7 and 8 indicate the possibility of
a scale law to account for the varying coefficient of restitution. For the sine pulse
excitation apart from the numerical results, figure 8 also shows (dashed lines) the
results obtained from the subsequent analysis.
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Figure 7. Time histories (equation (3.3)) for a different coefficient of restitution h (=0.80–0.96),
but given ug/p and ag/ag values. The varying coefficient of restitution results in a damping effect.

To investigate the possibility of a scale law, the closed-form solutions derived
previously are employed. Recall that for the safe area of the control space
(figure 4) above the curve ti = pTex (equation (3.31)), the first impact takes place
after the end of the excitation (case 1.2) and the block survives the motion. The
maximum rotation appears either during the excitation or after the first impact
(which takes place after the end of the excitation). As u = ug/p becomes larger,
the loading is more reminiscent to an impulse loading and thus the maximum
rotation appears after the end of the excitation. Assuming this case dominates,
conservation of energy (for small rotations) after the first impact can be used to
determine the maximum rotation angle

1
2
I (hq̇i2)2 = mgR[1 − cos(a − qm)] ⇒ qm

a
= 1 ±

√√√√1 −
(

h
q̇i2

pa

)2

. (4.12)

The positive sign solution lacks physical meaning because it yields a dimensionless
rotation greater than unity. Therefore, the maximum rotation is obtained by the
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negative sign solution as

qm

a
= 1 −

√
1 − h2(1 − D∗

0 ) or
gqm

ag
= 1

a

[
1 −

√
1 − h2(1 − D∗

0 )
]

, (4.13)
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where D∗
0 is given by equation (3.9). Equation (4.13) offers a closed-form

expression for the rocking spectra and is also plotted in figure 8 (dashed lines).
It is accurate when the first impact takes place after the end of the excitation
(above the curve ti = pTex; figure 8, top left) and approximate otherwise (below
the curve ti = pTex; figure 8, middle left and bottom left). The approximation
gets better (figure 8 left) near the curve ti = pTex that roughly corresponds to
ga/ag ≈ 0.4 (figure 4). Note that whether the block survives the motion or not can
be determined directly with the closed-form expressions. When overturning takes
place according to case 1.2, equation (3.18) indicates that hq̇i2/pa ≥ 1. Similarly,
equation (4.13) yields no real root for hq̇i2/pa ≥ 1, also indicating overturning.

The dependence on h in equation (4.13) is complicated, but for small values of
hq̇i2/pa it simplifies to

qm

a
	 h2

2

√
1 − D∗

0 , (4.14)

or equivalently

gqm

ag
	 h2

√
1 − D∗

0

2a
. (4.15)

Equations (4.14) and (4.15) unveil that the damping effect associated with
the coefficient of restitution h (figure 7) results in rocking spectra that can be
approximated by a scaling law with respect to h. In particular

qm

a
	 1

2
f (a, u)h2, (4.16)

where f (a, u) is a function of the two other independent variables (dimensionless
slenderness and dimensionless frequency) and is equal to

√
1 − D∗

0 for the case
under consideration. Such a similarity law (equation (4.16)) is an example of
‘incomplete self-similarity’ (Barenblatt 1996). The applicability of this scaling
law should be further investigated in order to derive, if feasible, pertinent closed-
form expression for different excitations. However, this analysis is beyond the
scope of this paper.

Finally, in the above closed-form expressions (equations (4.13)–(4.16)), the
coefficient of restitution h could be replaced with any dependable expression (e.g.
equation (2.4)), reducing the arguments of the problem and simplifying further
the expression. Under Housner’s formulation (equation (2.4)), it is interesting to
note that the slenderness a has a twofold effect on rocking which is evident in
the proposed dimensionless–orientationless groups. On the one hand, slenderness
affects the dimensionless slenderness 1/a = g tan a/ag and on the other hand the
damping through the coefficient of restitution h (equation (2.4)).

5. Non-slender block: self-similarity

While the derivations above are satisfactory for many practical engineering
applications, the more general case of non-slender blocks, where small-
angle assumptions do not hold, should be considered. The associated EOM
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(equation (2.2)) can be rewritten as

q̈

p2
+ cos a

[(
üg

g
tan a − 1

)
sin q +

(
tan a + üg

g

)
cos q

]
= 0, q > 0

and
q̈

p2
− cos a

[(
üg

g
tan a + 1

)
sin q +

(
üg

g
− tan a

)
cos q

]
= 0, q < 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.1)

Because the notions of dimension and orientation are differentiated, the
dimensionless–orientationless groups of equations (4.10) and (4.11) are only valid
for small values of a (slender blocks) for which the linearized EOM hold true.
For non-slender blocks (and large rotations), the orientations of the governing
parameters are slightly different. Instead of equation (4.3), the response function,
taking into account the orientations of the involved parameters (see equations
(4.6) and (4.7)), can be written as

qmax = f

(
ug

p
,
ag

g
, tan a, cos a, h

)
. (5.2)

The dimensionless–orientationless groups become

qmaxg
ag

= f

(
ug

p
,
g tan a

ag
, cos a, h

)
. (5.3)

The dimensionless slenderness (g tan a)/ag is exactly the expression that
determines the base acceleration for which a non-slender block enters the rocking
motion. Strictly speaking, this is as far as dimensional–orientational analysis
can take us, because all of the terms in equation (5.3) are orientationless,
including qmaxg/ag and cos a. Contrary to the case of slender blocks and small
rotations, the slenderness angle cannot be incorporated entirely into the other
dimensionless–orientationless arguments because it also appears as an isolated
parameter cos a. Practically, this means that non-slender blocks can exhibit
a self-similar rocking response only if they are geometrically similar (same
slenderness). The overturning plots in figure 9 illustrate the self-similar response
of two (non-slender) geometrically similar blocks (a = 20◦) of different size (R =
0.5 m and 1.0 m). The overturning plots collapse to a single curve for a given
excitation (figure 9).

The explicit dependence of the response of non-slender blocks on a is
demonstrated by the overturning plots in figure 10. Note that the dependence
is relatively small for a < 15◦, and that as a decreases, the sine impulse curves
converge towards the relevant closed-form solution for slender blocks (figure 4).
This convergence is expected, as the dimensionless–orientationless terms of
equation (5.3) collapse to those of equation (4.11) for slender blocks. For large
non-slender blocks that undergo large rotations, further simplification is not
possible. However, figure 10 indicates that when the rocking rotation remains
small, the dependence on the slenderness angle a is explicit but it is consistent
and weak (figure 11).
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6. Non-slender block small rotations: approximate self-similarity

Owing to the weak dependence on a for small rotation angles, the rocking response
of non-slender blocks with small rotations is considered separately. In this case,
it is practically useful to eliminate cos a as an independent group, resulting in
equation (6.1)

qg
ag cos a

	 f

(
ug

p
,
g tan a

ag
, h

)
. (6.1)
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This formulation is not perfectly self-similar but it is practically (approximately)
self-similar for g tan a/ag near unity, say 0.5 < g tan a/ag < 1. This is
demonstrated in figure 11, where the rocking responses of non-slender blocks
with different geometry are calculated using the nonlinear EOM (equation (2.2)).
Results are presented in the proposed dimensionless–orientationless groups
derived for small angles (left) and for large angles (right). The right column shows
notably less dependence on a. Larger a values than presented in figure 11 need
not be considered because the fundamental assumption of pure rocking behaviour
(without sliding or bouncing) would likely break down.

In figure 12, the necessity to use the practically self-similar description
(equation (6.1)) for a larger value of dimensionless slenderness (g tan a/ag =
0.75) is investigated. In this case, it is even more evident that the response
is (approximately) self-similar only if the appropriate groups (equation (6.1))
are adopted.

Extending the same concept, rocking response spectra are plotted in the
proposed dimensionless–orientationless terms in figure 13 are also practically
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self-similar and indifferent to the intensity and the frequency content of the
excitation (figure 13). Note that similar overturning plots were presented in
figure 10 for the slender block formulation. In most cases, the overturning
contours for different slenderness values collapse to a single curve, confirming
practical self-similarity and therefore indifference to the intensity and the
frequency content of the excitation. It is again evident that the proposed groups
(equation (6.1)) are most effective for larger values of dimensionless slenderness
(g tan a/ag). On the basis of these results, the use of the dimensionless–
orientationless groups for large rotations (equation (6.1)) is proposed for all cases
(both slender and non-slender blocks), because they are nearly exact for small
rotations and an effective approximation for small rotations of non-slender blocks.

7. Conclusions

In this paper, the response of the stand-alone rocking block under a simple
pulse excitation is revisited. Closed-form solutions that define completely
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Figure 13. Rocking spectra presented using the dimensionless–orientationless groups derived for
non-slender blocks (equation (6.1)) for a given coefficient of restitution (h = 0.85) but different
slenderness.

the overturning areas of the linearized rocking block, on the control space,
are derived. These expressions are achieved after solving the associated
transcendental equations to calculate the time of impact, either exactly or
approximately, through an original procedure. To this end, a novel ad hoc
method for approximating the involved transcendental equation is proposed. This
formulation is practically useful, as it provides a quick method for directly plotting
overturning curves without extensive repeated numerical simulation and provides
insight into the mechanism behind the overturning of the rocking block.

In this context, it is shown that standard dimensional analysis does not yield
a useful scaling of the rocking problem. To tackle this challenge, the proposed
approach builds upon the closed-form solution and hinges upon the differentiation
of the notions of dimension and orientation. The dimensionless–orientationless
products derived condense the description of the rocking problem and unveil
the symmetry of self-similarity even though the response is nonlinear and
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non-smooth. Critically, the coefficient of restitution is treated as an independent
parameter of the rocking behaviour, to which the derived closed-form scaling
relation can be applied, allowing a single two-dimensional response spectrum
to completely describe the maximum rocking response of any slender block.
Finally, the study proposes a set of dimensionless–orientationless parameters for
non-slender blocks. These parameters allow a description of the response that
is exactly self-similar for small rotations, and practically self-similar for large
rotations. In summary, new methods for generating general overturning plots
and response spectra, for both slender and non-slender blocks of any geometry,
are provided.

The first author gratefully acknowledges the contribution of Prof. Nicos Makris in motivating some
of the ideas presented herein. Financial support for this research was provided by the Engineering
and Physical Sciences Research Council of the United Kingdom under grant reference number
EP/H032657/1.

Appendix A. Exact solution of equation (3.12)

Equation (3.12) is a transcendental equation of the form

I1e−t + I2et + I3 = 0 (A 1)

which can be rewritten as

e−t(I1 + I2e2t + I3et) = 0, (A 2)

where I1, I2 and I3 are (independent of time t) constants. Introducing the change
of variable x = et, equation (A 1) becomes

1
x

(I2x2 + I3x + I1) = 0. (A 3)

Equation (A 3), for positive x , yields a simple quadratic equation

I2x2 + I3x + I1 = 0. (A 4)
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