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Overturning of Retrofitted Rocking Structures under
Pulse-Type Excitations

Elias G. Dimitrakopoulos' and Matthew J. DeJong, M.ASCE?

Abstract: Numerous existing structures exhibit rocking behavior during earthquakes, and there is a continuing need to retrofit these struc-
tures to prevent collapse. In addition, while rocking behavior is typically prevented instead of utilized, an increasing number of structures are
being designed or retrofitted to allow rocking motion as a means of seismic isolation. This paper investigates the use of viscous damping to
limit the rocking motion by characterizing the fundamental behavior of damped rocking structures through analytical modeling. A single
rocking block analytical model is used to determine the viscous damping characteristics, which exploit the beneficial aspects of the rocking
motion, while dissipating energy and preventing overturning collapse. To clarify the benefits of damping, overturning envelopes for pulse-
type ground accelerations are presented and compared with the pertinent envelopes of the free rocking block. A semianalytical solution to the
linearized equations of motion enables rapid generation of collapse diagrams for pulse excitations, which provide insight into the overturning
mechanisms of the damped rocking block and the sensitivity of the response to the parameters involved. In addition, through solution of the
nonlinear equations of motion, bilateral and unilateral linear viscous dampers are shown to provide similar benefit toward preventing over-
turning, while nonlinear damping is found to provide relatively little and inconsistent benefit with respect to linear damping. DOI: 10.1061/

(ASCE)EM.1943-7889.0000410. © 2012 American Society of Civil Engineers.

CE Database subject headings: Rock structures; Excitation; Rehabilitation; Earthquakes.

Author keywords: Rocking; Overturning; Analytical dynamics; Earthquake engineering; Damping.

Introduction

Numerous structures experience rocking when loaded dynamically,
including monuments, towers, bridge piers, and sculptures. Recent
earthquakes have increased worldwide incentive to retrofit such
structures to avoid collapse during dynamic loading. In addition,
structures are increasingly being designed to capitalize on the ben-
eficial seismic isolation effect of allowing rocking motion, but op-
timal design configurations are still needed.

Typically, rocking behavior is prevented instead of limited or
controlled. Prevention is achieved by tying structures down, which
may involve internal drilling and reinforcing, or external wrapping
with fiber-reinforced polymers (Pampanin 2006). Recently though,
the exploitation of rocking behavior, supplemented with additional
strength and/or damping, is proliferating. The most important asset
of the rocking isolation is the avoidance of loading on the structure,
which limits yielding and damage. However, rocking does have the
palpable drawback of higher overturning risk.

Rocking has been proposed as a seismic isolation technique for
bridges (Chen et al. 2006). More recently, the rocking behavior of
bridge piers on footing foundations has been studied analytically
and/or experimentally by Ugalde et al. (2010), Cheng (2007),
and Hung et al. (2011). The combined use of rocking and additional
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strengthening and/or damping has also been investigated. Marriott
et al. (2009) proposed the use of rocking-dissipating connections
for bridge piers, Pollino and Bruneau (2007) made similar sugges-
tions for steel truss piers, and ElGawady and Sha’lan (2011) inves-
tigated the seismic behavior of segmental bridge bents. For
buildings, similar approaches are proposed by Restrepo and
Rahman (2007) for wall elements, Roh and Reinhorn (2010)
for columns, Ajrab et al. (2004) for wall-frame structures, and
Rai and Goel (2007) for masonry buildings.

Notwithstanding the applicable value of many studies on rock-
ing systems available in the literature, this research redirects atten-
tion to the fundamental dynamics governing the response of
rocking systems supplemented with additional strength or damp-
ing. In contrast to the significant amount of basic analytical-
theoretical research on the response of stand-alone rocking
structures (see Augusti and Sinopoli (1992) and references therein),
there are relatively few theoretical studies on the response of retro-
fitted rocking structures. For instance, the seismic isolation of rock-
ing objects was considered by Calio and Marletta (2003), Contento
and Di Egidio (2009; Di Egidio and Contento 2009), or more re-
cently by Vassiliou and Makris (2012). Makris and Zhang (2001)
analyzed the behavior of the anchored block under pulse-type
ground motions and showed that the anchored rocking response
can be worse than that of the pertinent stand-alone rocking block.

Complementing the research of Makris and Zhang (2001), the
next section shows that the use of a central tendon can overstiffen
the rocking block, store energy in the system, and be destructive.
Furthermore, when earthquake loading is rare and relatively min-
imal, as in the U.K., extensive reinforcing of a vast number of struc-
tures may be economically infeasible and too invasive for heritage
structures. Hence, application of intelligent less invasive interven-
tion methods is sought, through limitation of the rocking response
instead of prevention. This motivates the use of damping as a retro-
fit technique. This research aims to fundamentally characterize the
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damped rocking response to pulse-type ground motions, in order to
lay the foundation for the development of new retrofit solutions.
Pulse-type motions are used as the primary pulses within near-
source ground motions and have been shown to govern the rocking
response (Zhang and Makris 2001; DeJong et al. 2008).

Anchored Rocking Motion

Before considering damping retrofit solutions, consider first the
rocking block retrofitted with an unbonded central tendon (Fig. 1).
This simple configuration is representative of retrofit solutions used
in practice, but its dynamic response has received relatively little
attention in academic literature. Assuming the coefficient of friction
is high enough to prevent sliding during base excitation, the rock-
ing motion initiates when the ground acceleration ii, exceeds the
critical value: it, > a, min = g tan(c), where « is the angle of slen-
derness and g is the acceleration of gravity. During the rocking

8

i { —p?[sinfasgn(6) — 6] + “ cos|a sgn(6) — 6] + 29sin o sin ],
| —p?[sin(asgn(6) — 6) + %’cos(a sgn(0) — 0)],

where p = y/mgR/I is the frequency parameter of the block,
which is equal to the small angle pendulum frequency of the block
when hung from its corner; for a rectangular block I, = 4mR>/3,
which yields p = 1/3g/4R. Further, following (Makris and Zhang
2001), g = ufp2 /g is the influence factor, o = F, /W is the strength
parameter, F', is the strength of the tendon, and W is the weight of
the block. If the tendon reaches the fracture elongation
0(t) = us /b = 0, say at time instant t;, the tendon snaps and
the equation of motion switches irreversibly to the lower part
of Eq. (2).

To complete the description of the problem, the equation of mo-
tion is complemented with a coefficient of restitution 7, which de-
fines the energy dissipated when the block impacts the base (and
switches pivot points) as the ratio of the pre- and postimpact
velocities
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Fig. 1. Rocking block retrofitted with a central tendon
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motion, moment equilibrium with respect to the pivot points
(O or O') gives

Iy 0 +mgR sin|csgn (6) — 6] + Kb? sin 6
= —mii,R cos|a sgn () — 0] (1)

where 6 = rocking rotation (positive in the clockwise direction),
Iy = moment of inertia with respect to the pivot point, m = mass
of the block, R = length of the half-diagonal, K = stiffness, T =
force of the tendon, and sgn() = the standard sign function. The
slenderness angle is defined by tan(a) = b/h, where 2b is the width
and 2# is the height of the block. The tendon is assumed to behave
elastically until brittle fracture occurs at an elongation of u;. The
yield elongation u; of the tendon occurs, assuming small rotations,
at a rotation 0, : uy = b0;.

After dividing by I, the equation of motion [Eq. (1)] can be
written in the compact form

7 ift<tf} 2)

if 1> 1

This approach is reasonable under the assumption that after each
base impact, the block remains in contact with the new impact
point. In other words, the block is slender enough to prevent bounc-
ing or sliding (Contento and Di Egidio 2009).

Egs. (2) and (3) can now be used to determine the rocking re-
sponse of the retrofitted block. Comparison of Eq. (2) with the per-
tinent formulation for the rocking block retrofitted with anchors
located at both bottom corners (Makris and Zhang 2001) reveals
that, for small rotations, the central tendons must be four times
stiffer and twice as strong as the corner anchors to create an equiv-
alent system.

The effect of adding a central tendon to the overturning
envelope of the rocking block subjected to a single sinusoidal
ground acceleration pulse is shown in Fig. 2. The overturning plot
(Fig. 2) is typical of rocking systems, and predicts overturning after
impact for ground acceleration pulses that lie within the lower bub-
ble, overturning without impact in the upper left region, and no
overturning for all other pulses. Fig. 2 demonstrates that for
low-frequency acceleration pulses, the minimum acceleration
needed to overturn the block is increased by the tendon, while
for higher-frequency pulses the tendon provides little benefit or
can even be destructive. While increasing the strength of the tendon
increases the minimum acceleration needed to overturn the block, it
also increases the tendency of the block to overturn after impact
(Fig. 2). This counterintuitive trend, previously observed for corner
anchored blocks (Makris and Zhang 2001), results from the stiff
tendon attracting load and storing energy in the system. In particu-
lar, the energy stored in the tendon during the initial cycle of rock-
ing propels the block at a higher angular velocity in the other
direction after impact, and eventually causes the tendon to snap
and the block to collapse at lower acceleration levels. The response
is even worse for elastoplastic anchored blocks (Makris and Zhang
2001). Furthermore, the stresses within the structure are signifi-
cantly increased by the presence of the tendon.
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Fig. 2. Overturning envelopes for the freestanding block and the block
retrofitted with a central tendon with strength parameters o = 2.0, 4.0
and g =52x107*

Damped Rocking Motion: Semi-Analytical Approach

Motivated by the inverse effects of adding strength to the rocking
block, and the beneficial seismic isolation effect of allowing the
rocking motion, the remainder of the this paper focuses on the ef-
fects of additional damping instead of additional strength.

This section presents a semianalytical approach to predicting the
damped rocking response, which is based on linearized equations
of motion. The linearization presented was shown to sacrifice rel-
atively little accuracy for slender blocks (Lenci and Rega 2006),
and the semianalytical approach is considerably less computation-
ally expensive than the numerically solved nonlinear approach, par-
ticularly when producing multiple overturning envelopes. Thus, the
semianalytical approach allows rapid assessment of the trends
caused by varying the range of system parameters. The numerical
nonlinear solution will be used in the subsequent section to inves-
tigate nonlinear damping in detail.

Consider the rocking block retrofitted with linear viscous damp-
ers at its corners and subjected to a pulse-type base excitation with
acceleration amplitude a, and frequency w,. Under the assumptions
in the previous section (no sliding and bouncing), the moment equi-
librium of the retrofitted rocking block with respect to pivot points
O and O’ (Fig. 3) gives

Iy 0 +mgRsinforsgn() — 0] + P - r = —miiyR cos[a sgn(6) — 0]

- .
o

pav.)
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0
0
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where
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2h

;
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Fig. 3. Rocking block retrofitted with viscous dampers at its corners

(

(t — Top) = asgn(f) + AeM~Ter) 4 Berl=Te)|
bt

(1) = MeM + puBel" +=—%= o COS

(

MeN=Te) 4 Ben(t=To),

where r = lever arm of the damping force P with P = Cv, v = ex-
tension velocity of the damper, and C = damping constant. Eq. (4)
can be rewritten using geometric properties

6= —pz{sin[oz sgn(0) — 0] 4 cos[a sgn(f) — 9]}
— py(1 + cos 6)d (5)

where p = \/3g/4R is again the frequency parameter of the block,
and y = (3Csin’c)/(2mp) is a dimensionless parameter that relates
the damping constant C to the mass m, slenderness «, and fre-
quency p of the block. When the block is slender enough (small
«) that the rotation 6 remains small, and assuming a simple trigo-
nometric excitation of the form

PR sin(wyt + ), fort<T,,
£ 0, fort>T,,

(6)

Eq. (5) can be linearized as

. i —p?Zsin(w,t + 1), for t < T,
0+ 2p’y€ _p29 +p204 sgn(@) _ { 4 4 ( 8 7\/])
0, fort > T,,

()

where ¢ = sin"!(ag/ a,) is the phase angle at the time instant rock-
ing initiates and T, = (27 — ¢)/w, is the time instant when the
excitation expires and the free rocking initiates. The solution for
the forced rocking r < T, and the free rocking stage t > T,
are thus

1) = asgn(f) + AeN + Bel' + ";%sin(wgt +¢Y+¢), fort<T,

fort>T,,
(Wet + 9+ ¢), fort<T,, 8)
fort>T,,
2 2 2
Y TP Jlrp , sing = _pzwg

,uz—}—p(\/yz—&—l—y) >0 P=(w:+p*)?+ 4>yl (9)
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Fig. 4. Possible response sequences of a damped rocking block excited
by a sine pulse. Initial conditions (A, B) and sign of rocking rotation 6
for each response stage (appendix)

Eq. (8) is solved repeatedly for each subsequent stage of the
rocking response. Eq. (8) is linear only during each stage of the
response (Fig. 4), while because of the transition between stages
the system is still nonlinear. After each impact the angular velocity
of the block is reduced according to Eq. (3). The stages are sep-
arated by either impact at time ¢; or the expiration of the excitation
at time 7,,. The constants A and B depend on the initial conditions
and the time instant that each stage initiates (Fig. 4). To distinguish
each case, different subscripts are used. For instance, A, and B
correspond to zero initial conditions 6(r = 0) = 6,, 6(r =0)
= 6. All of the quantities used are summarized in the appendix.
Further, for y = 0, Eq. (8) yields the solutions of the undamped
case (Zhang and Makris 2001), and for p = 1, Eq. (8) yields the
pertinent solutions of the damped rocking block for sine excitation
(Lenci and Rega 2006).

The conditions that lead to overturning of the rocking block
have been studied, among others, by Zhang and Makris (2001)
and Makris and Roussos (1998) for the undamped case under sim-
ple trigonometric pulses, and from a dynamical systems perspective
by Lenci and Rega (2006) for harmonic excitation. In this study, we
extend the kinematical approach of Zhang and Makris (2001) to the
damped case, according to which the minimum acceleration ampli-
tude leads to the overturning of the block during the free rocking
stage when the velocity tends to a minimum at a very large time

. 2
Bli) = 0 = NAeN + 2Ber' = 0 = A2V — [ p
(10)

As the dimensionless time pt increases, the left-hand side of
Eq. (10) vanishes. Hence, for + — oo the overturning condition
[Eq. (10)] becomes

B=0 (11)

Eq. (10) is the overturning condition for additional damping and
unveils that under minimum acceleration amplitude, the block
overturns during the free rocking phase if the coefficient B of
the exponential term Be! eventually (for large pr) disappears
(B = 0). Otherwise, because p > 0 for B > 0, the term Be' repre-
sents exponential growth and the solution diverges [Eq. (8)]. Taking
into account the different notation, the proposed overturning
condition [Eq. (10)] coincides with the pertinent condition of
Makris and Roussos (1998) for zero damping y = 0, while it is
similar to the critical condition for immediate overturning of
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Lenci and Rega (2006). With the help of the appendix, the over-
turning condition for each case of Fig. 4 can be summarized as

Case 1.1: B(tsg) = 0 = By + A — M, = 0
Case 1.2: 0(1,5) = 0 = (M2 Te)
+ MBL)erM(fiz*Ta)) +Xa=0 (12)

Case 2: O(ts,) = 0 = ByetTe
2
+ (n— /\)‘lp—clzg(wg cos¢ — Asing) =0
8

The unknown time instants of impacts are determined from tran-
scendental equations (see appendix). The numerical solution of the
analytical expressions of the overturning conditions [Eq. (12)]
comprise a semianalytical approach to calculate the overturning
of the rocking block.

Fig. 5 presents the overturning envelopes of the rocking block
with linear viscous dampers for different combinations of the co-
efficient of restitution 7, which represents the natural damping of
the system, and the additional damping y offered by the dampers.
The behavior is dependent on the following dimensionless terms:

a

‘ £ 13
gtana’ p ? 777 Y ( )

Presenting results using the dimensionless terms in Eq. (13) al-
lows the visualization of general trends in the rocking response,
which are not limited to a single scale or geometry. Fig. 5 offers
an overview of the effect of damping on the rocking block. Similar
to the stand-alone rocking block (Zhang and Makris 2001), the
damped rocking block displays two different modes of overturning
because of a sine pulse excitation: either without impact (Case 2 in
Fig. 4) or after experiencing exactly one impact (Cases 1.1 and 1.2
in Fig. 4). In general, and as expected, the overturning-with-impact
mode (Cases 1.1 and 1.2) is more critical, because it appears for
lower excitation intensities. In the original (unretrofitted) system, en-
ergy is dissipated only through impacts, hence the overturning with-
outimpact mode is unaffected by the coefficient of restitution. On the
other hand, the addition of viscous damping affects both modes of
overturning. Further, unlike for the addition of strength (discussed in
the Anchored Rocking Motion Section), both overturning envelopes
shrink consistently with increased damping (Fig. 5).

The presented results are focused on the transient response of
the damped rocking block to finite duration excitations. This is
partly because the response of the damped rocking block to har-
monic excitation has been thoroughly investigated by Hogan
(1992) and Lenci and Rega (2006), among others. But more im-
portantly, one main advantage of the rocking system is that constant
frequency rocking resonance is impossible because the effective
frequency changes with the rocking amplitude. Further, harmonic
ground motions, which could cause rocking resonance, would have
to have a precise time-varying frequency, and are thus extremely
unlikely (DeJong 2009). As a result, the transient response to finite
pulses typically governs the seismic response. It is possible that the
rocking motion could build up, because of multiple impulses, but the
addition of damping would suppress rocking between impulses, mit-
igating multiple impulse amplification. However, while quantifying
this effect is beyond the scope of this work, it should be considered.

Damped Rocking Motion: Numerical Approach

Based on the above benefits of linear damping (previous section),
this section aims to provide a means of predicting overturning

J. Eng. Mech. 2012.138:963-972.
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Fig. 5. Overturning envelopes of the damped rocking block under a sine pulse excitation for different coefficients of restitution 1 and different

additional damping y

envelopes for any damped rocking structure under any pulse-type
ground motion. While the derivation is generally applicable, it will
be specifically applied to investigate nonlinear viscous damping for
both sine and cosine excitation pulses.

Bilateral Viscous Dampers

Consider the addition of (nonlinear) viscous dampers at the bottom
corners of the rocking block (Fig. 3). The force P of a viscous non-
linear damper is given by

P = Cli|" sgn() (14)

where v = extension velocity of the damper, C = damping constant,
and n = damping exponent. Fig. 6 presents the force-velocity
behavior of nonlinear viscous dampers. Moment equilibrium of
the retrofitted rocking block gives

§= —pz{sin[a sgn(6) — 6] +%COS[06 sgn(f) — 9]}

—py 2cosg sgn(0) (15)

0.
cosEH

where y = 3Csin?c/(2mp) is again the dimensionless damping
parameter. For linear viscous dampers, n = 1 and Eq. (15) simpli-
fies to Eq. (5).

Unilateral Viscous Dampers

Recentering, or limiting residual displacements despite large dis-
placement during seismic loading, is an advantage of the rocking

2.0 —F
sl
1.5 '1 / oA
Q Y '
g 1.0
Ao /" —+—n=0.25
/; —o—n=0.5
/ .
0.51 ;0 n=1
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0.0 = T T T
0 0.5 1 1.5 2
v (mls)

Fig. 6. Force (divided by damping constant) versus velocity behavior
of nonlinear viscous dampers for different velocity exponents

motion. However, collapse must be prevented. Thus, to limit
collapse while encouraging recentering, unilateral viscous damp-
ers, which are activated only during uplift, are also considered.
The behavior of unilateral viscous dampers can be described with
the help of function S, (6, 6)

1 when uplifting

| .
S,(0,0) =—=[sgn(f-0)+ 1] = 16
(6.9) 2[ en(0-0)+ 1] {0 when restoring (16)
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Fig. 7. Overturning envelopes, including the two impact overturning mode (shaded gray) for cosine pulse excitation and different levels of damping

From Eq. (15), the equation of motion for the linear unilateral Damped Rocking Response to Pulse-Type Excitations

viscous damper becomes . . . . .
The rocking response under single-cycle trigonometric pulse exci-

.. tations is determined by numerically solving the nonlinear differ-
- —pz{sin[a sgn(6) — 0] +kcos[a sgn(6) — 9]} ential equations of motion [Eqgs. (15) and (17)]. The numerical
8 solutions are obtained through a state-space formulation using
the differential equations solvers available in MATLAB. The per-

n 0 ) .
— 2cos=S,(6,0 0 17
P €% u(0;0)sgn(0) (17) tinent results are presented using the same dimensionless terms of

0.
-0
COS2

15 15

g

21w,

2nlw,

Fig. 8. (a)-(b) Overturning envelopes for the rocking block with bilateral linear viscous dampers; (c)-(d) unilateral linear viscous dampers; no
damping (thick gray line)
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Fig. 9. Comparison of overturning envelopes for the rocking block retrofitted with bilateral and unilateral linear viscous dampers

Eq. (13) plus, in the case of nonlinear dampers, the velocity
exponent 7.

Linear Viscous Damping

As the previous sections indicate, a sine pulse excitation can cause
overturning without impact or after exactly one impact. In addition,
a two-impact overturning mode occurs for a cosine pulse, and more
overturning modes arise for more complicated excitations (Hogan
1990; Hogan 1992; Plaut et al. 1996). The two-impact overturning
mode for a cosine pulse is depicted in Fig. 7. It should be noted that
the two-impact overturning region also exists for the undamped
(stand-alone) rocking block, which has not been previously iden-
tified. Additional damping expands this overturning region (Fig. 7)
for both bilateral and unilateral damping. The region associated
with the two-impact overturning mode is relatively small and only
slightly reduces the safe region between the no-impact and one-
impact overturning modes. While this is of little consequence from
a design perspective, it is interesting from a nonlinear dynamics
perspective, and it further demonstrates the fickleness of the rock-
ing response (Hogan 1990). In all subsequent figures, the lower
limit of this two-impact overturning curve is plotted, while the
no-impact overturning mode (which lies just above) is omitted
for clarity.

Fig. 8 presents the overturning envelopes for bilateral damping,
for equivalent unilateral damping (same y parameter), and for the
undamped (stand-alone) rocking block. Linear damping (n = 1)
and a constant coefficient of restitution (n = 0.825) are assumed,

and therefore the relationship between damping (y) and the pulse
characteristics, which cause collapse, can be directly portrayed.
The overturning envelopes for sine pulses produced numerically
from the fully nonlinear equations of motions are in good agree-
ment with the pertinent semianalytical results of the Damped Rock-
ing Motion: Semi-Analytical Approach Section.

The overturning envelopes shrink with additional damping for
sine and cosine pulse excitations with both types of damping
(though to a lesser extent with unilateral damping), although the
safe region between the two modes of overturning is adversely
shifted upward for the unilateral damping case (Fig. 9). Despite
the favorable shrinking of the overturning region caused by damp-
ing, the beneficial upward shift of the low-frequency portion of the
overturning envelope caused by the addition of strength (Fig. 2) is
clearly not achieved by damping alone.

To clarify the relative effects of the two damping options, Fig. 9
directly compares the overturning envelopes for bilateral and uni-
lateral damping. Both unilateral and bilateral dampers have a sim-
ilar beneficial effect for overturning without impact. However, there
is a brief change in velocity prior to overturning, during which the
block tries to recover. Bilateral dampers limit this recovery, while
unilateral dampers allow it, making them slightly more effective.

For overturning with impact, both damping options cause a sim-
ilar beneficial shift in the minimum impulses, which cause over-
turning (the lower limit of the overturning area shifts up and
left). However, bilateral dampers provide a larger decrease of
the total overturning area through a larger downward shift in the
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blocks excited with identical sine pulses (c) corresponding to Point 1 in Fig. 9
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Fig. 11. (a) Comparison of the unilateral damping (left) and bilateral damping (right) rocking response and (b) system energies for identical rocking
blocks excited with identical sine pulses (c) corresponding to Point 2 in Fig. 9

upper limit of the overturning region. While this may be beneficial, Plaut et al. 1996). As mentioned previously, it is not reliable from a
this intermediate safety area between the two overturning regions is design perspective and the lower limit is more important. Consid-
aresult of the highly nonlinear behavior of the rocking block and is ering only the lower limit, both damping options have a remarkably
very sensitive to the characteristics of the excitation (Hogan 1990; similar benefit.
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Figs. 10 and 11 further demonstrate the sensitivity of the rocking
response by comparing specific energy time histories for which ei-
ther bilateral damping or unilateral damping would be preferred.
Figs. 10 and 11 present the rocking response corresponding to
the Points 1 and 2, respectively, in the overturning diagram (Fig. 9),
where T and U denote the kinetic and potential energy, E, is the
total energy, and [, is the moment of inertia. In Fig. 10, bilateral
damping results in overturning, while unilateral damping results in
recovery. For the unilateral damping case, the total energy exceeds
the minimum energy necessary for collapse, even after the accel-
eration pulse had ended, but the block recovers. In Fig. 11, both
damping options nearly caused collapse without impact, and the
bilateral damping case even exceeds the critical rotation
(|6/a] > 1) before ultimately recovering. Furthermore, the maxi-
mum total system energy is more than twice the minimum energy
necessary for collapse, but the block recovers because the maxi-
mum energy occurs when the potential energy (U) is minimal.
Maximum total energy is clearly not a good indicator of collapse,
because the energy input must synchronize with the rocking re-
sponse to cause collapse.

Nonlinear Viscous Damping

While linear viscous dampers are effective in shrinking the over-
turning envelope, further benefit could be obtained by using non-
linear viscous dampers. Bilateral dampers performed slightly better
than unilateral dampers, and therefore only bilateral nonlinear
dampers will be considered. As n increases, the damping behavior
resembles that of an impact absorber. As n decreases, the damping

15

2w,

1
@, /p
Fig. 12. Overturning envelopes for the rocking block with bilateral
nonlinear viscous dampers and no damping (thick gray line)

behavior tends toward frictional damping or a rigid-plastic behavior
(see Fig. 6).

Fig. 12 presents the single-pulse overturning envelopes for rock-
ing blocks retrofitted with nonlinear dampers with various n coef-
ficients. All types of nonlinear damping reduced the overturning
envelope, but the effect of nonlinear damping compared with linear
damping is markedly different for the two pulse types. For the sine
pulse, the overturning envelope shrinks as n decreases, and expands
as n increases. The inverse is true for the cosine pulse.

Therefore, a universal benefit for any pulse ground motion can-
not be achieved by use of nonlinear damping. Instead, linear damp-
ing provides an average improvement for both types of ground
motion.

Conclusions

The consequences of adding damping to rocking structures are in-
vestigated. Interestingly, while additional damping is already
implemented in practice to retrofit rocking structures, there is a lack
of theoretical research on the subject.

The overturning envelopes of a rocking block retrofitted with
bilateral and unilateral (activated only during uplift) linear viscous
dampers, show a substantial enhancement of the behavior. As a
general rule, for a given damping level, the performance of the
two types of damper is comparable. However, while the unilateral
damper delays the first appearance of both the one-impact and no-
impact overturning modes, the area of the one-impact overturning
region is larger, compared with the pertinent bilateral damper re-
sults. In addition, nonlinear dampers have a moderate effect on
the results, and provide contrasting shrinking or expansion of
the overturning regions for the two pulse excitations investigated.
Thus, linear damping seems an appropriate choice, for which the
semianalytical approach provides a useful solution. Finally, in
contrast to the alternative of anchoring the rocking system, the ad-
dition of damping does not lead to adverse effects, where the
behavior of the retrofitted system may actually be worse than that
of the stand-alone system.

Appendix. Analytical Solutions to Eq. 8

The constants A and B depend on the initial conditions of each
response stage (Fig. 4) and the time instant the phase initiates.
For zero initial conditions, 0(r = 0) = 6,, 6(t =0) = 6, they
simplify to

o= = 0~ {52 usin(u +0) — iy cos(v + ] - o

2
pay

By = (ji— A)*{K[Asinww) ~ weos(+ )] - Aa}

(18)

After the end of the excitation and assuming no impact has taken
place (Cases 1.2 and 2 of Fig. 4)

2

a

Ao = AgeMe + (A — p) ! p—lg (wy cos ¢ — pusin @)
8

‘ (19)

By = Boe!er + (u—\) 7! % (wg cos ¢ — Asin ¢)

In the event of an impact after the end of the excitation (Case 1.2 of
Fig. 4), the time instant impact occurs ¢; is determined by solving
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—a+ A, geMeTe) £ B, jetlin=Tu) = () (20)

where the pertinent overturning condition is
By =(u—N" [U(Mexoem‘rT“) + pBgeaTa)) 4 )\a} =0
(21)

On the other hand, if an impact occurs before the end of the ex-
citation (Case 1.1 of Fig. 4)

, . pla,w
(1) = i = MoeMn + pBoeln + %COS(%M +¢+9)

Ap=A=-m! {179,-1 + pa +% [sin(wgtiy +1 + @)
— weos(wgt +1+ 0)]}
By = (u—\)" {né,-l + Aa +p;‘llg [Asin(wgty + 1+ ¢)
— weos(wyty + v+ ¢)]} (22)

where the time instant of impact #;; (Case 1.1 of Fig. 4) is deter-
mined by solving

2
— a + AgeMit + Byettn —}—pTa—gsin(wgtil +yY+¢)=0 (23)
8

The rotation and the angular velocity of the block at the end of the
excitation become

2
eex = H(Tex — til) = o+ Aile)\(Tex*Til) + Bile#(Tu*tn) +p_(;gsin ¢
8
2
eex = 9(]‘6)c — til) = )\Aile/\(Tex_til) -+ #Bileﬂ<TeA_ti]> —&-[L{;wgcosqﬁ
8
(24)
The overturning condition accordingly becomes
Bexl = (,u - )‘)71 (éex +da — )‘eex) =0 (25)
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