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SUMMARY

Predicting the rocking response of structures to ground motion is important for assessment of existing
structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking
as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize
rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking
block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures
that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently,
approximate equivalence between single and multiple block mechanisms is achieved through local
linearization of the relevant equations of motion. The approximation error associated with linearization is
quantified for three essential mechanisms, providing a measure of the confidence with which the proposed
methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Original interest in the rocking response of structures stemmed from the desire to quantify ground
accelerations and explain overturning during earthquakes (e.g. [1, 2]), but related research continues
to expand. This is partially due to the complex dynamics of very simple rocking systems, for which
harmonic steady state modes and overturning envelopes (e.g. [3–6]) are intriguing, even before
consideration of sliding and bouncing (e.g. [7, 8]) or multi-block systems (e.g. [9–12]), which
rapidly engender untenable complexity for practical applications. Continued research interest also
stems from the fact that deterministic methods of reliably predicting rocking response have
remained elusive due to poor conditioning of the dynamical system and irregularity of expected ground
motions. As a result, the problem has often been tackled from a stochastic perspective (e.g. [2, 13, 14]),
generating trends in overturning behavior or probabilistic predictions. Alternatively, overturning has
been investigated by considering pulse-type motions, to which rocking structures are particularly
vulnerable, and for which deterministic results are achievable (e.g. [15–17]). Quantification of the
rocking response to pulse-type motions provides tangible overturning predictions, but the response to
ground motions where multiple impulses are influential is both time-dependent and sensitive [14], and
again beckons for probabilistic methods.

From a more practical perspective, interest in rocking has expanded because of the peculiar negative
stiffness, which is characteristic of rocking motion, and effectively isolates the structure from the full
influence of ground motion. While this seismic isolation was exploited by pioneering engineers in the
1970s [18, 19], the use of rocking was limited in practical engineering design, although it is recently
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gaining momentum [20–22]. Recent applications limit the magnitude of rocking through the use of
post-tensioning and energy dissipation, in order to meet compatibility requirements. Thus, the
focus of related investigations has shifted from prediction of overturning to prediction of maximum
rocking amplitude, or drift, including specification of required post-tensioning stiffness and
damping capacity to meet drift limits. While these studies have often preferred computational
methods of analysis, they have also inspired analytical investigations that more generally capture
the effects of damping on rocking [23].

In this context, there is a need to predict the expected rocking response, whether the concern is
possible overturning of nonstructural components, possible collapse of unreinforced masonry
structures, or the design of a rocking bridge pier. In practice, rocking structures are assessed
using static analysis methods or by using linear elastic response spectra (e.g. [24]), both of
which are of limited accuracy [25]. Instead, rocking response spectra could be particularly
useful. However, such spectra require rocking structures to be defined by a single set of
rocking parameters.

This paper presents a methodology to derive an equivalence between SDOF rocking structures
(or mechanisms) and the single rocking block. This would allow rocking response spectra, as
well as the vast existing research on the single rocking block, to be more broadly applicable.
Exact equivalence between different single block structures is straightforward and is considered
first, followed by the consideration of approximate equivalence between single and multiple
block structures.

2. REVIEW OF SIMPLE ROCKING STRUCTURES

An archetypal rocking system is the single rocking block subjected to horizontal ground motion
(Figure 1). The rocking block is the most studied rocking system, and provides a basis for
comparison to other SDOF rocking systems. This section presents the equations of motion for the
rocking block and reviews other rocking structures for which a direct equivalence with the rocking
block exists. The present study focuses solely on the case of pure rocking behavior: the rotation
about alternate bottom corners of the block around the pivot points O and O’ (Figure 1).

2.1. The rocking block and the fundamental rocking parameters

Consider a rigid block with semi-diagonal R and slenderness α, as defined in Figure 1, subjected to a
horizontal ground motion with acceleration time history üg tð Þ. If the coefficient of friction is sufficient

Figure 1. Rocking block geometry.
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to prevent sliding, and the block slender enough to avoid bouncing, the block will uplift and commence
rocking once the ground acceleration exceeds a minimum magnitude:

λ ¼ üg;min

g
¼ tan α (1)

where g is the gravitational acceleration and λ the dimensionless uplift parameter. According to the
formulation of Housner [2], the equations of motion during pure rocking are:

IO θ̈ tð Þ þMgR sin þα� θ tð Þð Þ ¼ �R cos þα� θð ÞMüg tð Þ; θ tð Þ > 0

IO θ̈ tð Þ þMgR sin �α� θ tð Þð Þ ¼ �R cos �α� θð ÞMüg tð Þ; θ tð Þ < 0
(2)

where IO is the mass moment of inertia of the block about point O and θ is the rocking rotation
(Figure 1). Rearranging Eq. (2) and using the sgn() function yields

θ̈ ¼ p2 � sin α sgn θð Þ � θ½ � � üg
g
cos α sgn θð Þ � θ½ �

� �
(3)

where p is the rocking frequency parameter, which equals the pendulum frequency of the block when

hung about its corner. For a rectangular block (Figure 1), p ¼ pbl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g= 4Rð Þp

.
Further, for slender blocks, Eq. (2) can be linearized about the point of unstable equilibrium

(θ = θcr= α), yielding [2]:

IO θ̈ tð Þ þMgR α� θ tð Þð Þ ¼ �MRüg tð Þ; θ tð Þ > 0

IO θ̈ tð Þ þMgR �α� θ tð Þð Þ ¼ �MRüg tð Þ; θ tð Þ < 0
(4)

Equation (4) can also be written as:

θ̈ ¼ p2 �α sgn θð Þ þ θ � üg
g

� �
(5)

Under the assumption of pure rocking, when the block returns to its initial position (θ = 0), impact
takes place, the pivot point changes, and the rotation switches sign. A simple way to treat impact is
with a coefficient of restitution η, which describes the energy dissipated at impact as the ratio of the

pre- (θ̇
�
) and post- θ̇

þ� �
impact angular velocities:

θ̇
þ ¼ ηθ̇

�
(6)

The accuracy of this definition of the coefficient of restitution is application and material specific
and is beyond the scope of the present paper. Instead, the coefficient of restitution will be treated as
an independent parameter in the formulation of the rocking problem, as in [4], allowing
implementation of any method of determining its actual value (e.g. [26, 27] and references therein).

Equations (1)–(6) identify four essential parameters that define the response of the rigid rocking
block: (i) a frequency parameter p; (ii) a point of unstable equilibrium θcr; (iii) an uplift parameter λ;
and (iv) a damping parameter η. In the case of the rocking block, linearization about the unstable
equilibrium position results in a special case where λlin = θcr = α, so the number of essential
parameters is reduced to three. However, this is not generally the case. For other structures, λ≠ θcr
for both the nonlinear and the linearized equations of motion, as discussed in Section 3.

Linearization of the equation of motion about a static configuration, as in Eq. (5), is essential to the
proposed approximate equivalence discussed in Section 3. It should be noted that the static
configuration where the linearization is applied is important [6, 28], and that the linearized equations
of motion become less accurate for non-slender blocks [29]. Further, the magnitude of the error caused
by using a linearized formulation is dependent on the magnitude of the rocking response, which is both
sensitive and time-dependent. However, trends in linearization error can be observed [29], and indicate
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that the size and slenderness of the block, relative to the frequency and amplitude of the ground motion,
affect the error. Note that in Section 3 of this study, the focus is instead on quantifying the error associated
with the linearization of the mechanisms themselves, independent of the time dependence of the ground
motion. Errors for specific ground motion would be less consistent and could be considered separately
as in [29].

2.2. Direct equivalence to the single rocking block

Numerous authors have investigated the rocking response of a single rigid block using the formulation of
§2.1. Interestingly, the same four rocking parameters (p, θcr, λ, η) can also describe the dynamic response
(linear or nonlinear) of any symmetric rigid object that rocks about alternating symmetric corners, as well
as a select group of more complicated structures. Table I presents three structures that are dynamically
equivalent with the rocking block and includes their corresponding rocking parameters. Note that for
this table, conservation of angular momentum [2] was used to calculate the damping parameter.

Perhaps the simplest of these structures (Table I) is the point mass on a massless rigid strut with a
rigid base, for which the frequency parameter p is readily evident as the natural frequency of a
pendulum. The rocking conical shell model (Table I) has been used to evaluate the observed
overturning of masonry spires due to horizontal ground motion [30]. A similar model of a cracked
spire with a diagonal base (not shown) provided good predictions of experimental results for near-
source earthquakes, which contain a dominant primary pulse [31]. In both cases, potential rotation
of the conical shell about its vertical axis is ignored.

These equivalences result from different geometries of a single rigid body and, in that sense, are
somewhat unsurprising. On the contrary, the symmetric rocking frame (Table I) involves a multiple
block mechanism that also exemplifies direct equivalence with the single rocking block [32].
Section 5 demonstrates that the symmetric rocking frame is a special case of a more general class of
rocking mechanisms, which are locally equivalent to the rocking block. Note that this equivalence is
obviously not possible if sliding and bouncing were considered [10, 11], although these effects may
be minimal for slender structures subjected to short-duration ground motions.

3. MULTI-BLOCK ROCKING MECHANISMS—PROPOSED METHODOLOGY

A single equation of motion (either Eq. (3) or (5)) describes the response of any of the structures in
Table I. Thus, their direct equivalence is somewhat palpable. The present and following sections
deal with multiple block mechanisms whose equations of motion are not identical to the pertinent of
the rocking block. Instead, an approximate equivalence is sought.

Table I. Rocking structures with direct dynamic equivalence to the single rocking block.

Rocking parameter

p2
3g
4R

g
R1

3g
4R2

16
3 6� sin2αð Þ

3g
4R3

1þ2γ
1þ3γ

θcr α

λ tan α

η ηbl ¼ 1� 3
2 sin

2α ηbl � 1
2 sin

2α
ηbl

1�1
6 sin

2α
ηblþ3γ cos 2α

1þ3γ

For the frame, γ=mbeam/mcolumns, where mbeam is the mass of the beam and mcolumns is the combined mass of the
columns [32].
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In general, the equation of motion for the rocking block, or any rocking mechanism, can be derived
using Lagrange’s equation:

∂
∂t

∂T
∂ϕ̇

 !
� ∂T
∂ϕ

þ ∂V
∂ϕ

¼ Q (7)

where T is the kinetic energy, V is the potential energy, Q is the generalized force, and ϕ is the
generalized coordinate, which describes the rocking motion. For the rocking block, Eq. (7) returns
Eq. (2). However, for multiple block mechanisms, Eq. (7) yields an equation of the following form:

Inl ϕð Þϕ̈ þ Jnl ϕð Þϕ̇2 � Gnl ϕð Þg ¼ �Bnl ϕð Þüg (8)

where Inl, Jnl, Gnl, and Bnl are nonlinear functions of the generalized coordinate, and the point of
unstable equilibrium (ϕcr) is determined from

∂V
∂ϕ

����
ϕ¼ϕcr

¼ 0 (9)

The minimum ground acceleration üg;min capable of initiating rocking can be determined either from

the principle of virtual work, or by substituting ϕ̈ ¼ 0 ; ϕ̇ ¼ 0 ; ϕ ¼ 0 into Eq. (8):

üg;min

g
¼ Gnl 0ð Þ

Bnl 0ð Þ ¼ λ (10)

There are two essential differences between Eqs. (2) and (8). First, Eq. (8) includes an additional

term Jnl ϕð Þϕ̇2
, which describes the centrifugal and Coriolis accelerations. Second, the inertial term

Inl(ϕ) in Eq. (8) is now a function of the generalized coordinate. These differences prevent
straightforward equivalence with the rocking block. Instead, this study utilizes local equivalence
with the rocking block at the unstable equilibrium position (ϕ =ϕcr) to derive an overall
approximate equivalence. For small amplitude vibrations about an equilibrium point, Lagrange’s
equation (7) assumes the linearized form [33]:

∂2T

∂ϕ̇
2

�����
ϕ¼ϕcr

ϕ̈ þ ∂2V
∂ϕ2

����
ϕ¼ϕcr

ϕ � ϕcrð Þ ¼ Qjϕ¼ϕcr
(11)

For a multi-block mechanism, Eq. (11) yields

Ieq ϕ̈ � Geq ϕ � ϕcrð Þg ¼ �Beqüg (12)

where Geq, Beq, and Ieq are constants that are specific to the kinematics of the unstable equilibrium
configuration (Sections 4 and 5):

Ieq ¼ ∂2T

∂ϕ̇
2

�����
ϕ¼ϕcr

Geq ¼ � 1
g

∂2V
∂ϕ2

����
ϕ¼ϕcr

Beq üg ¼ �Qjϕ¼ϕcr
(13)

Equation (12) differs from the pertinent equation of the rocking block (4) in that the excitation term
is scaled differently than the stiffness term (Beq≠Geq). For this reason, the following transformation of
variables is introduced:

θ tð Þ ¼ ϕ tð Þ
κ

(14)
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where θ represents the rotation of the equivalent single block, while ϕ represents the rocking rotation
of the multi-block mechanism, and further

κ ¼ κ1 ¼ Beq

Geq
(15)

With the help of the transformation (14), the equation of motion (12) assumes the form:

θ̈ ¼ p2eq �θcr þ θ � üg
g

� �
(16)

which is now directly equivalent with (5), and for which

peq ¼
ffiffiffiffiffiffiffiffiffiffi
gGeq

Ieq

s
; θcr ¼ ϕcr

κ
(17)

As for the rocking block in Section 2, the uplift acceleration is affected by the linearization, and for
Eq. (12), it becomes

üg;min

g
¼ Geq

Beq
ϕcr ¼ λlin (18)

Hence, the scaling parameter (15) can be written as

κ1 ¼ ϕcr

λlin
(19)

In general, λlin is an approximation of the exact value λ from Eq. (10). For the rocking block, the
difference between these two values increases as the block becomes less slender. It is not always
evident whether more complicated rocking structures (Sections 4 and 5) are effectively slender or
stocky, but the ratio between λlin and λ provides a useful measure to quantify effective slenderness.
For non-slender structures, an alternate definition of the scaling parameter is desirable:

κ ¼ κ2 ¼ ϕcr

λ
(20)

Note that the definition of Eq. (20) meets the uplift boundary conditions of the nonlinear system,
whereas definition (19) does not. Thus, use of Eqs. (17) and (20) together result in an equivalent
block approximation where linearization about the rest position is used to determine κ2, while
linearization about the point of unstable equilibrium is used to determine peq. Sections 4 and 5
investigate the effects of these approximations.

The methodology proposed earlier hinges on a local approximation of the nonlinear equations of
motion around the unstable equilibrium position. In practice, civil engineering structures experience
relatively small rotations, so the study of critical configurations may be adequate. Further, the error
associated with ground motion prediction is large, so the error associated with linearization may be
acceptable. Physically, and in particular dynamically, multiple block rocking mechanisms are similar
to the single rocking block when (i) they can be modeled as SDOF systems; (ii) the different
kinematics are locally similar; and (iii) the self-weight restoring mechanism generates the
characteristic negative stiffness of rocking behavior. These conditions yield structures that can be
described by three fundamental mechanical mechanisms: the pendulum, the slider-crank, and the
four-bar linkage. The previous section considered the pendulum or single block mechanism. The
following sections consider the slider-crank (two-block) mechanism and the four-bar linkage
(three-block mechanism).
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4. TWO-BLOCK MECHANISMS—THE ROCKING MASONRY WALL

Consider the slider-crank mechanism shown in Figure 2. Several studies (e.g. [34–36]) adopt this
fundamental mechanical configuration, or variations of it, to study the out-of-plane behavior of
masonry walls. Variations of this mechanism, which consider additional loads or mass from adjacent
structure, could be considered in a similar fashion, but only the unloaded wall is considered here.
Using the rotation ϕ (Figure 2) as the generalized coordinate, the nonlinear equation of motion of
this rocking structure (direction shown) is

IO
2mgR

þ 2R
g

sin2 α� ϕð Þ
� �

ϕ̈ � R

g
sin 2 α� ϕð Þ ϕ̇2 þ sin α� ϕð Þ ¼ � 1

2
üg
g
cos α� ϕð Þ (21)

where IO is the mass moment inertia of one block about its corner. Note that Eq. (21) is of the same
form as Eq. (8). Linearization of Eq. (21) about the unstable equilibrium position (ϕcr= α) yields

2R
3g

ϕ̈ ¼ ϕ � ϕcr �
1
2
üg
g

(22)

According to Eq. (15), κ1 = 1/2, and the transformation of variables in Eq. (14) yields

θ̈ ¼ p2wall θ � θcr � üg
g

� �
(23)

where pwall ¼
ffiffiffi
2

p
pbl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3g=2R

p
and θcr = 2α through the use of Eq. (17), and θ(t) = 2ϕ(t) according

to Eq. (14).
The error associated with linearization arises from the approximation of the frequency

parameter p and the scaling parameter κ , both of which are constant in the linearized
formulation but vary with the rocking rotation in the nonlinear formulation. The frequency
parameter p essentially defines the period of free rocking as a function of the rotation angle. If
no ground motion occurs, then κ has no effect on the results. To evaluate the error associated
with the approximation of p alone (independent of κ), the error in free rocking period
(Tr,blockeq/Tr,wall) is plotted as a function of rotation angle (ϕ/ϕcr) and slenderness (α) in
Figure 3 (top left). The free rocking period of the rocking wall Tr,wall was calculated
numerically using Eq. (21), while the free rocking period of the equivalent block [2] is:

Tr;blockeq ¼ 4
peq

cosh�1 1
1� θ=θcr

� �
(24)

Figure 2. Rocking wall geometry.
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To evaluate the error associated with κ, a forced response must be considered. A constant horizontal
ground acceleration of infinite duration was specified, and the time required (tover,wall) for the wall to
reach the point of overturning instability (ϕ =ϕcr) was determined numerically using Eq. (21). The
overturning time for the equivalent block described by Eqs. (16) and (19) is [2]:

tover;blockeq ¼ 1
peq

cosh�1 1
üg

gλ
λ
λlin

� 1
þ 1

0
B@

1
CA (25)

Figure 3 (top right) shows the error in overturning time (tover,blockeq/tover,wall) as a function of the
magnitude of the ground acceleration normalized by the wall uplift acceleration (üg=gλ ) and the
slenderness (α). Note that the absolute overturning time is not of interest, but the ratio of
overturning times provides a simple and consistent measure of the magnitude of the error in the
forced response through the entire range of motion of the structure.

The results indicate a relatively small magnitude of error for slender walls (α< 0.2). The error in free
rocking period is least near the point of unstable equilibrium, the point about which the equation of
motion is linearized. While these errors are not ideal, they may be acceptable considering the
accuracy of earthquake prediction.

For the wall under consideration, κ1 = 1/2, while κ2 = α/2 tan α. The difference between these scaling
parameters arises from the difference between λ and λlin, which is shown in Figure 3 (bottom left).
Using κ2 instead of κ1, the overturning time error is shown in Figure 3 (bottom right). The largest
difference in overturning time errors is seen for values of üg=gλ near unity, where the response is
obviously sensitive to the assumed uplift acceleration. Regardless, for this structure, the selection of the
scaling parameter has a relatively small effect on both the uplift accelerations and the overturning time
errors, so use of either κ1 or κ2 may be appropriate. However, this is not generally the case.

5. THREE-BLOCK MECHANISMS

This section examines two more complicated rocking structures: the asymmetric rocking frame and the
rocking arch. Under specific assumptions, both structures exhibit a three-block rocking mechanism. For

Figure 3. Evaluation of the equivalent block approximation of the masonry wall: free rocking period error
(Tr,blockeq/Tr,wall ) (top left), uplift parameter error (bottom left), and overturning time error (tover,blockeq/tover,wall)

using κ 1 (top right) and κ 2 (bottom right).
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the asymmetric rocking frame, the pivot points are predefined but the rocking mechanism differs depending
on the sign of the rocking rotation. The rocking arch, on the other hand, displays a symmetric rocking
configuration with respect to the sign of the rocking rotations, but the pivot points are not known a priori.

5.1. The asymmetric rocking frame

A more general case of the two-column rocking frame in Table I is an asymmetric rocking frame
(Figure 4). During rocking, the two piers do not exhibit the same rotation, which causes the connecting
beam to both translate and rotate. As a result, the kinematics becomes more complicated and the
mechanism bears more resemblance to the rocking arch (Figure 9) than to the symmetric rocking frame.
Defining the properties of an equivalent rocking block becomes a more tedious and challenging task.

Figure 4 illustrates the assumed three-block mechanisms for clockwise (positive) and anticlockwise
(negative) rotations. The pivot points are A, B, C, and D for positive rotations (Figure 4 left) and A′, B′, C′,
and D′ for negative rotations (Figure 4 right). In both cases, it is assumed that no sliding occurs. Note that
the twomechanisms are not identical (Figure 4). For positive rotations, the distance rBC,p (measured fromB
to the center of massGBC) is larger, and the angleψBC,p is smaller than the corresponding distance rBC,n and
angle ψBC,n for negative rotations. For this reason, depending on the sign of the rocking rotation, the
following substitutions must be made in Eqs. (27)–(38):

IBC ¼ IBC;p; rBC ¼ rBC;p; ψBC ¼ ψBC;p; for ϕ ¼ φ0p � φ > 0

IBC ¼ IBC;n; rBC ¼ rBC;n; ψBC ¼ ψBC;n; for ϕ ¼ φ0n � φ < 0
(26)

Figure 4. Geometry of the asymmetric rocking frame.
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where subscript p corresponds to positive rotations (Figure 4, left) and subscript n to negative rotations
(Figure 4, right).

5.1.1. Kinematic analysis. The rich kinematics of the three-block mechanism (i.e. four-bar linkage) of
Figure 4 has been examined extensively in the literature of machines and mechanisms. The following
analysis is confined to the needs of the present study.

The instantaneous configuration of the three-block mechanism can be captured with a single
generalized coordinate, which is selected as the angle φ of segment AB with respect to the
positive x-axis. The rocking amplitude is measured as the rotation with respect to the initial
position (ϕ = φ0� φ) in both directions. The orientation of bars BC and CD, with respect to
the positive x-axis can be written as a function of the generalized coordinate and known
geometry:

φBC φð Þ ¼ arctan
�R0 sin φþ r0 sin φAD þ R1 sin φCD φð Þ
�R0 cos φþ r0 cos φAD þ R1 cos φCD φð Þ
� 	

φCD φð Þ ¼ arctan
R0 sin φ� r0 sin φAD
R0 cos φ� r0 cos φAD

� �
� arccos

BD2 φð Þ þ 4R1
2 � L2

4R1�BD φð Þ
� 	 (27)

where R0, R1, and r0 are the half-lengths of blocks AB, BC, and AD, respectively (Figure 4).
The angular velocities are then derived from the pertinent rotations by differentiating with
respect to time:

φ̇BC φ;φ̇ð Þ ¼ ∂φBC
∂φ

φ̇ ¼ f BC φð Þ�φ̇; φ̇CD φ;φ̇ð Þ ¼ ∂φCD
∂φ

φ̇ ¼ f CD φð Þ�φ̇ (28)

where φ̇ is the angular velocity of member AB, and the functions fBC and fCD express the rate
of change of the rotations φBC and φCD with respect to φ. Therefore:

f ′BC φð Þ ¼ ∂2φBC
∂φ2

; f ′CD φð Þ ¼ ∂2φCD
∂φ2

(29)

5.1.2. Equation of motion. The potential energy of the three-block mechanism can be expressed as

V ¼ g mAB þ 2mBCð ÞR0 sinφþ mBCrBC sin φBC þ ψBCð Þ þ mCD 2H � 2H1 þ R1 sinφCDð Þ½ � (30)

where mAB, mBC, and mCD are the masses of blocks AB, BC, and CD, respectively. The kinetic energy
can be expressed as

T ¼ 1
2
IAB φ̇2 þ 1

2
IBC f BC φð Þ�φ̇ð Þ2 þ 1

2
ICD f CD φð Þ�φ̇ð Þ2

þ 1
2
mBC 2R0ð Þ2 þ 4R0rBC cos φ� φBC � ψBCð Þf BC φð Þ

h i
φ̇2

(31)

where IAB is the mass moment of inertia of AB with respect to the pivot point A, and IBC and ICD are the
equivalent quantities for members BC and CD.
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The equation of motion is derived from Lagrange’s equation (7) and takes the form of Eq. (8), where

Inl φð Þ ¼ IAB þ IBC f BC φð Þð Þ2 þ ICD f CD φð Þð Þ2þ
mBC4R0 R0 þ rBC cos φ� φBC � ψBCð Þ f BC φð Þ½ �

( )

Jnl φð Þ ¼ �
IBCf BC φð Þf ′BC φð Þ þ ICD f CD φð Þ f ′CD φð Þ þ 2mBCR0rBC cos φ� φBC � ψBCð Þ f ′BC φð Þ

� sin φ� φBC � ψBCð Þ 1� f BC φð Þð Þf BC φð Þ�

( )

Gnl φð Þ ¼ � mAB þ 2mBCð ÞR0 cos φþ mBCrBC cos φBC þ ψBCð Þ f BC φð Þ þ mCDR1 cos φCD f CD φð Þf g

Bnl φð Þ ¼
mABR0 sin φþ mCDR1 sin φCD φð Þ½ � f CD φð Þ
þmBC 2R0 sin φþ rBC sin φBC φð Þ þ ψBC½ � f BC φð Þ½ �

( )

(32)

5.1.3. Essential rocking parameters. The minimum ground acceleration required to initiate rocking
assumes different values for positive and negative rocking rotations. Applying Eq. (10) for the two
rocking mechanisms in Figure 4 yields

λ ¼ üg;min

g
¼ b

H

mAB þ 1± H
H1

� 2b
L 1� H

H1

� �h i
mBC þ H

H1
mCD

mAB þ 2 bh
LH 1� H

H1

� �
þ 1

h i
mBC þ mCD

(33)

where the positive sign corresponds to positive rotations, while the negative sign to negative rotations.
The critical rotation can be found using Eq. (9), which takes the following form:

mAB

mBC
þ 2

� �
sin φCD φcrð Þ � φBC φcrð Þ½ � cos φcr þ

mCD

mBC
sin φcr � φBC φcrð Þ½ � cosφCD φcrð Þ

þ cosφBC φcrð Þ 1±
2b
L

� �
� 2h

L
sin φBC φcrð Þ

� 	
sin φcr � φCD φcrð Þ½ � ¼ 0

(34)

where again the positive sign corresponds to positive rotations, while the negative sign to negative
rotations. The critical rotation can then be determined numerically.

5.1.4. Symmetric frame. Equations (27)–(34) also describe the behavior of the symmetric rocking
frame (Table I), for which φBC = 0, φCD = θ, I0 = IAB = ICD,R =R0 =R1, and m=mAB =mCD. In
particular, the equation of motion (8) simplifies to

I0 þ 2mBCR
2

� �
φ̈ ¼ � mþ mBCð ÞR g cosφ� üg sinφ

� �
(35)

Using Eq. (33), the uplift parameter becomes

λ ¼ üg;min

g
¼ b

H

mAB þ 2mBC þ mCD

mAB þ 2mBC þ mCD
¼ tanα (36)

Using Eq. (34), the critical rotation is simply

φcr ¼
π
2

⇒ ϕcr ¼ φ0 � φcr ¼
π
2
þ α

� �
� π

2
⇒ϕcr ¼ α (37)
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Hence, Eqs. (35)–(37) verify the direct equivalence between the symmetric rocking frame and a
rocking block, as previously identified [32]. However, because of the different kinematics of the
asymmetric frame, this direct equivalence is lost.

5.1.5. Linearized equation of motion. Using the approach outlined in Section 3, the equation of
motion can be linearized about the point of (unstable) equilibrium using Eq. (11), written in the
form of Eq. (12), in which

Ieq ¼
IAB þ IBCf BC φcrð Þ2 þ ICD f CD φcrð Þ2þ
mBC4R0 R0 þ rBC cos φcr � φBC φcrð Þ � ψBCð Þ f BC φcrð Þ½ �

( )

Geq ¼ �
mBC rBC cos φBC φcrð Þ þ ψBCð Þ f ′BC φcrð Þ � sin φBC φcrð Þ þ ψBCð Þ f BC φcrð Þð Þ2

h i
þmCDR1 cos φCD φcrð Þð Þ f ′CD φcrð Þ � sin φCD φcrð Þð Þ f CD φcrð Þð Þ2

h i
� mAB þ 2mBCð ÞR0 sinφcr

8><
>:

9>=
>;

Beq ¼
mABR0 sinφcr þ mCDR1 sin φCD φcrð Þð Þ f CD φcrð Þ
þmBC 2R0 sinφcr þ rBC sin φBC φcrð Þ þ ψBCð Þf BC φcrð Þ½ �

( )

(38)

As a direct consequence of its lack of symmetry, the rocking frame displays a behavior similar to a
nonsymmetric rocking block (e.g. [37–39]); its dynamic (rocking) properties differ with the direction
of rocking motion. Using the substitutions of Eq. (26), Eq. (38) yields the constants that describe the
rocking mechanisms for clockwise (positive) and anticlockwise (negative) rotations.

Figure 5 presents the dynamic parameters of the equivalent block for a large range of geometries of
the asymmetric rocking frame. The left column contains results for a range of geometries with a
relatively square aspect ratio and a relatively slender cross beam, resulting in less error associated
with the linearized uplift parameter. On the other hand, the right column contains results for frames
with a relatively extreme aspect ratio, and a very thick cross beam, so as to purposely induce a
larger error associated with the linearized uplift parameter. The subscripts p and n specify the
rocking direction. For example, ϕcr,p /α= (φcr� φ0p)/tan� 1(b/H) denotes the critical rocking rotation
in the positive (clockwise) direction scaled over the slenderness of the left column. For H1/H= 1, the
frame is symmetric, while as H1/H becomes larger the rocking properties in the two directions differ
more, reflecting the asymmetry of the structure.

Figures 6–8 present the error associated with the proposed methodology similarly to the rocking
wall (Section 4). In particular, Figure 6 presents the error associated with the approximation of p
alone (independent of κ), as a function of the rotation angle, the rocking direction, and the
geometry of the frame. Figures 7 and 8 estimate the error associated with κ1 and κ2, respectively,
considering again the time required for the frame to reach the point of overturning under a
constant horizontal ground acceleration of infinite duration (tover, frame). As a general rule, for
slightly asymmetric frames, the errors introduced by the proposed linearized approach are
acceptable. Frames with higher asymmetry are not considered because the assumption of pure
rocking might be less reasonable.

5.2. The rocking arch

The rocking arch can also be described as a three-block mechanism. Following the formulation of
Oppenheim [40], the arch is assumed to form a mechanism (Figure 9, left) when subjected to
horizontal ground motion. When the arch returns to its initial position, impact occurs, and the
mechanism is assumed to reflect about the vertical line of symmetry (Figure 9, right). Thus, the
structure is in some ways similar to the rocking wall, as the positive and negative rocking
mechanisms are the same. However, the structure also resembles the asymmetric rocking frame, as it
is comprised of a three-block mechanism, for which Coriolis and centrifugal acceleration terms are
present in the equations of motion.
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Figure 6. Evaluation of the equivalent block approximation of the asymmetric frame: free rocking period
error (Tr,blockeq/Tr,frame) for different rocking directions and frame geometries

Figure 5. The dynamic properties of an equivalent rocking block for different geometries and rocking
directions of the asymmetric frame.
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Figure 7. Evaluation of the equivalent block approximation of the asymmetric frame: overturning time error
(tover,blockeq/tover,frame ) using κ1.

Figure 8. Evaluation of the equivalent block approximation of the asymmetric frame: overturning time error
(tover,blockeq/tover,frame ) using κ2.
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5.2.1. Equation of motion and problem formulation. Unlike the asymmetric frame, the arch is
comprised of numerous blocks, so the hinge locations of the three-block mechanism are not
immediately obvious, and could change throughout the motion. As in previous studies [40, 41], it is
assumed that the hinge locations are those of the quasi-static collapse mechanism, and that the
locations of the hinges are assumed fixed once rocking commences. Computational [41] and
experimental [42] results indicate that these assumptions are reasonable and effective. Regardless,
the accuracy of this simplification is extraneous to the current study, which takes the assumed
mechanism as the starting point to investigate dynamic equivalence.

The geometry of the arch is defined by the inclusion angle β, thickness ta , centerline radius ra , and
number of blocks n. To remove the effect of the number of blocks, a very large number of blocks were
specified, allowing hinges to form essentially anywhere, and resulting in a minimum uplift parameter
(λ) and the corresponding mechanism.

The kinematics of the rocking arch are similar to the asymmetric frame, and the equation of
motion is therefore also described by Eqs. (8) and (32), if the pertinent arch parameters are
substituted for their asymmetric frame counterparts. Similarly, the critical rotation angle (ϕcr) and
the uplift parameter (λ) can be found using Eqs. (9) and (10), respectively. For the arch, the hinge
locations are dependent on the geometry (ta, ra, β) and are determined numerically, and Eqs. (8)
and (9) are solved numerically as well.

Likewise, the linearized equation of motion about the point of unstable equilibrium is again
described by Eq. (12), where

Ieq ¼
IAB þ ICDf CD φcrð Þ2 þ IBCf BC φcrð Þ2þ

mBC ABj j
h
ABj j þ 2rBC cos φcr � φBC φcrð Þ � ψBCð Þ f BC φcrð Þ

i
8<
:

9=
;

Geq ¼ �

mBCrBC
cos φBC φcrð Þ þ ψBCð Þ f ′BC φcrð Þ

�mBCrBC sin φBC φcrð Þ þ ψBCð Þ f BC φcrð Þ2

2
4

3
5

þmCDrCD cos φCD φcrð Þ þ ψCDð Þ f ′CD φcrð Þ � sin φCD φcrð Þ þ ψCDð Þ f CD φcrð Þ2
h i

�mABrAB sin φcr þ ψABð Þ � mBCAB sinφcr

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

Beq ¼
mABrAB sin φcr þ ψABð Þ þ mCDrCD sin φCD φcrð Þ þ ψCD½ � f CD φcrð Þ
þmBCrBC sin φBC φcrð Þ þ ψBC½ �f BC φcrð Þ þ mBCAB sinφcr

( )

(39)

The only difference between Eqs. (38) and (39) is that |AB| = 2R0, and that ψAB and ψCD are zero for
the asymmetric frame, while they are nonzero for the arch. Note that rAB , rBC , and rCD are the distance
between the hinge and center of mass of the relevant arch segment (Figure 9) and are the equivalent of
R0 , rBC , and R1 for the asymmetric frame.

Figure 9. Geometry and symmetric rocking mechanisms of the arch.
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5.2.2. Linearization results. The critical rocking parameters are plotted in Figure 10 for a range of
practical arch geometries. Note that p is affected by the overall scale of the structure, and is
therefore presented in dimensionless form, while ϕcr and λ are already dimensionless. As expected,
increasing the inclusion angle ( β) or decreasing the thickness both increase the effective slenderness
of the arch, causing a decrease in ϕcr and λ. Further, both of these parameters have a smaller effect on
p, indicating a relatively smaller change in the effective scale of the arch. Figure 10 (bottom right) also
presents the error associated with the uplift acceleration caused by the linearized formulation. Because
of the arch geometry and kinematics, the linearization process causes a larger error in the prediction of
uplift acceleration than for the previous structures considered.

Figures 11–13 present the error associated with the proposed methodology similarly to previous
sections. In particular, Figure 11 presents the error associated with the approximation of p alone
(independent of κ), as a function of the inclusion angle relative thickness of the arch. Generally,
errors in free rocking period are relatively small, although they increase for less slender arches
(Figure 11, bottom right). Figures 12 and 13 estimate the error associated with κ1 and κ2, respectively,
again considering the time required for the arch to reach the point of overturning (tover,arch) under a
constant horizontal ground acceleration. In general, the errors in overturning time in Figure 12 are
relatively large compared to the equivalent results for previous structures. This is partially explained by
the relatively poor approximation of uplift provided by λlin for the arch, as shown in Figure 12,
particularly for lower magnitudes of ground acceleration. Use of κ2 causes a remarkable improvement,
reducing the error considerably (Figure 13).

6. ILLUSTRATIVE EXAMPLES

The preceding sections have presented a simplified approach to predict the approximate response of
complicated rocking mechanisms. The viability of the approach is dependent on acceptable error. In
earthquake engineering, the errors quantified in the previous sections may be acceptable, as larger
uncertainties in ground motion prediction capabilities may exist. This section briefly exemplifies the
utility of the described approach in this context.

6.1. Seismic response

Consider first an arbitrary asymmetric frame subjected to the horizontal ground acceleration time
history in Figure 14 (top), which was recorded at Rinaldi station during the 1994 Northridge

Figure 10. Essential arch rocking parameters for a range of geometries: ta/ra= 0.12–0.20.

1558 M. J. DEJONG AND E. G. DIMITRAKOPOULOS

Copyright © 2014 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2014; 43:1543–1563
DOI: 10.1002/eqe



earthquake [43]. The response of the asymmetric frame to the entire earthquake record, using both the
nonlinear and linear formulations in Section 5.1, is shown in Figure 14.

Note that this frame is highly asymmetric, with λn = 0.241 and λp = 0.197, where the subscripts
denote the two rocking directions. The response compares relatively well, indicating the advantage

Figure 11. Linearization free rocking period error (Tr,blockeq /Tr,arch ) associated with the equivalent block
approximation of the masonry arch.

Figure 12. Overturning time error (tover,blockeq /tover,arch) associated with the equivalent block approximation
of the masonry arch when using κ1.
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of the linearized approach. In this case, the earthquake contains a primary acceleration impulse,
highlighted as a single period sine pulse. The response of the frame to this sine pulse alone is also
plotted in Figure 14 bottom, and the dominance of the pulse is evident.

Figure 13. Overturning time error (tover,blockeq/tover,arch) associated with the equivalent block approximation
of the masonry arch when using κ2.

Figure 14. Seismic response of an asymmetric rocking frame: Northridge-Rinaldi earthquake ground motion
and frame geometry (top), rocking response (bottom).
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6.2. Response to pulse-type excitations

Several studies have considered the rocking response to pulses described as simple trigonometric
functions (e.g. [15, 16]) and have demonstrated why rocking structures are particularly vulnerable to
pulse-type earthquakes. The equivalences derived in the preceding sections, combined with the use
of dimensionless variables, are particularly advantageous for this type of loading. In light of the
derivations herein, the dimensionless groups defined in [16] can be slightly modified, yielding

ϕ
ϕcr

¼ f
ωg

p
;
ag
gλ

; pt; η
� �

¼ f ω; a; τ; ηð Þ (40)

where ag and ωg are the amplitude and circular frequency of the acceleration pulse, respectively, and
θcr and λ have replaced α in the similar equation in [16]. The use of either λlin or λ in Eq. (40)
corresponds to a scaling parameter of κ1 or κ2, respectively.

Using the dimensionless groups in equation Eq. (40), the maximum response to a sinusoidal impulse
can be directly calculated [16]:

ϕmax

ϕcr
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2 1� D�

0

� �q
(41)

where:

D�
0 ¼

ω
ω2 þ 1

� �2
(
ω2 � 2a2 þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
þ ω

� �
ae� 2π� sin�1 1=að Þð Þ=ω

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
� ω

� �
ae 2π� sin�1 1=að Þð Þ=ω

) (42)

Thus, Eqs. (41) and (42) can be used to directly approximate the maximum response of any structure
with equivalence to the symmetric block. For some geometries, these equations are less accurate, and
response spectra plots can instead be employed. A similar approach is possible for the asymmetric frame,
although alternate equations and spectra, derived using asymmetric blocks, would be required.

Figure 15. Comparison of pulse-type ground motions to which different structures are equivalently vulnerable.
Responses are calculated using the relevant nonlinear equations of motion.
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Alternatively, the response of frames with relatively small asymmetry could be approximated by
averaging the rocking parameters in the two directions.

The dimensionless groups mentioned earlier are also useful to characterize the relative vulnerability of
a variety of completely different structures to pulse-type ground motions. For example, consider the four
structures shown in Figure 15. When subjected to the corresponding impulses shown, these structures
have very different dimensional responses, but very similar nonlinear dimensionless responses
(identical for the block and symmetric frame), and identical linearized dimensionless responses (not
shown). Thus, these structures are (approximately) equivalently vulnerable to the impulses shown.

7. CONCLUSIONS

This study considers approximate equivalence between three types of SDOF rocking structures, which are
extremely common mechanical systems: single block mechanisms (Section 2), two-block mechanisms
(Section 4), and three-block mechanisms (Section 5). Importantly, this equivalence is considered for
structures which can only sustain relatively small rotations before instability and therefore collapse.

The proposed methodology, which hinges on local linearization of nonlinear equation of motion,
effectively yields the essential rocking parameters required to derive approximate equivalence with
the rocking block. The error associated with linearization has been quantified and is affected by
both the geometry and the kinematics of the mechanism. For cases where larger linearization
errors occur, an alternate linearization approximation, which preserves the actual uplift
acceleration of the nonlinear system, is proposed. For the masonry arch, this alternate procedure
effectively reduces the error.

The level of acceptable error is application dependent. However, for many applications in the field
of earthquake engineering, the order of magnitude of the errors found herein may be acceptable in
comparison to relatively large uncertainties associated with ground motion prediction.
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